Abstract
The manufacture and use of triple-barreled microelectrodes, which are capable of simultaneous in vivo measurement of intracellular pH and the activities of K+ or NO3- and cell membrane potential (Em), are described. Scanning electron micrographs showed that the three tips were aligned and that the overall tip diameter was approximately 0.8 [mu]m. When filled with 100 mM KCl, all three barrels simultaneously reported identical transmembrane potentials, showing that all three tips were located in the same subcellular compartment. Intracellular estimates of Em in barley (Hordeum vulgare L. cv Klaxon) root epidermal cells obtained with these triple-barreled microelectrodes were indistinguishable from those obtained using single- or double-barreled microelectrodes. Measurements made with triple-barreled K+ and pH-selective microelectrodes in root cells of 7-d-old barley plants grown in a nutrient solution containing 0.5 mM K+ yielded cytosolic and vacuolar populations having mean K+ activity values of 71.3 and 68.7 mM, respectively. The associated mean pH values ([plus or minus]SE) were 7.26 [plus or minus] 0.06 (cytosol) and 5.18 [plus or minus] 0.08 (vacuole). Analysis of whole-tissue digests confirmed the microelectrode measurements. Measurements made using triple-barreled pH- and nitrate-selective microelectrodes confirmed earlier double-barreled measurements of pH and nitrate in barley root epidermal cells growing in 10 mM nitrate.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammann D., Chao P. S., Simon W. Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Neurosci Lett. 1987 Feb 24;74(2):221–226. doi: 10.1016/0304-3940(87)90153-4. [DOI] [PubMed] [Google Scholar]
- Blatt M. R., Slayman C. L. KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell. J Membr Biol. 1983;72(3):223–234. doi: 10.1007/BF01870589. [DOI] [PubMed] [Google Scholar]
- Chao P., Ammann D., Oesch U., Simon W., Lang F. Extra- and intracellular hydrogen ion-selective microelectrode based on neutral carriers with extended pH response range in acid media. Pflugers Arch. 1988 Feb;411(2):216–219. doi: 10.1007/BF00582318. [DOI] [PubMed] [Google Scholar]
- Coles J. A., Orkand R. K. Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina. J Physiol. 1985 May;362:415–435. doi: 10.1113/jphysiol.1985.sp015686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dufau E., Acker H., Sylvester D. Triple-barrelled ion-sensitive microelectrode for simultaneous measurements of two extracellular ion activities. Med Prog Technol. 1982;9(1):33–38. [PubMed] [Google Scholar]
- Fry C. H., Hall S. K., Blatter L. A., McGuigan J. A. Analysis and presentation of intracellular measurements obtained with ion-selective microelectrodes. Exp Physiol. 1990 Mar;75(2):187–198. doi: 10.1113/expphysiol.1990.sp003393. [DOI] [PubMed] [Google Scholar]
- Harvey B. J., Kernan R. P. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain. J Physiol. 1984 Apr;349:501–517. doi: 10.1113/jphysiol.1984.sp015170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mertz S. M., Higinbotham N. Transmembrane electropotential in barley roots as related to cell type, cell location, and cutting and aging effects. Plant Physiol. 1976 Feb;57(2):123–128. doi: 10.1104/pp.57.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitman M. G., Läuchli A., Stelzer R. Ion distribution in roots of barley seedlings measured by electron probe x-ray microanalysis. Plant Physiol. 1981 Sep;68(3):673–679. doi: 10.1104/pp.68.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachtman D. P., Schroeder J. I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 1994 Aug 25;370(6491):655–658. doi: 10.1038/370655a0. [DOI] [PubMed] [Google Scholar]