Abstract
The involvement of activated oxygen in the drought-induced damage of pea (Pisum sativum L. cv Frilene) nodules was examined. To this purpose, various pro-oxidant factors, antioxidant enzymes and related metabolites, and markers of oxidative damage were determined in nodules of well-watered (nodule water potential approximately -0.29 MPa) and water-stressed (nodule water potential approximately -2.03 MPa) plants. Water-stressed nodules entered senescence as evidenced by the 30% decrease in leghemoglobin and total soluble protein. Drought also caused a decrease in the activities of catalase (25%), ascorbate peroxidase (18%), dehydroascorbate reductase (15%), glutathione reductase (31%), and superoxide dismutase (30%), and in the contents of ascorbate (59%), reduced (57%) and oxidized (38%) glutathione, NAD+ and NADH (43%), NADP+ (31%), and NADPH (17%). The decline in the antioxidant capacity of nodules may result from a restricted supply of NAD(P)H in vivo for the ascorbate-glutathione pathway and from the Fe-catalyzed Fenton reactions of ascorbate and glutathione with activated oxygen. The 2-fold increase in the content of "catalytic Fe" would also explain the augmented levels of lipid peroxides (2.4-fold) and oxidatively modified proteins (1.4-fold) found in water-stressed nodules because of the known requirement of lipid and protein oxidation for a transition catalytic metal.
Full Text
The Full Text of this article is available as a PDF (791.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
- Aruoma O. I., Halliwell B., Laughton M. J., Quinlan G. J., Gutteridge J. M. The mechanism of initiation of lipid peroxidation. Evidence against a requirement for an iron(II)-iron(III) complex. Biochem J. 1989 Mar 1;258(2):617–620. doi: 10.1042/bj2580617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becana M., Klucas R. V. Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8958–8962. doi: 10.1073/pnas.89.19.8958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. A., Baird L. M., Langeberg L., Taugher C. Y., Anyan W. R., Vance C. P., Sarath G. Subcellular Localization of Oxygen Defense Enzymes in Soybean (Glycine max [L.] Merr.) Root Nodules. Plant Physiol. 1993 Jun;102(2):481–489. doi: 10.1104/pp.102.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. A., Post C. J., Langeberg L. Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione, ascrobate, and associated enzymes in soybean root nodules. Plant Physiol. 1991 Jul;96(3):812–818. doi: 10.1104/pp.96.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. A., Russell S. A., Hanus F. J., Pascoe G. A., Evans H. J. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3811–3815. doi: 10.1073/pnas.83.11.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Draper H. H., Squires E. J., Mahmoodi H., Wu J., Agarwal S., Hadley M. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 1993 Oct;15(4):353–363. doi: 10.1016/0891-5849(93)90035-s. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981 Jun 15;128(2):347–352. doi: 10.1016/0014-5793(81)80114-7. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
- Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
