Abstract
The photosynthetic productivity of maize (Zea mays) in temperate regions is often limited by low temperatures. The factors responsible for the sensitivity of photosynthesis in maize to growth at suboptimal temperature were investigated by measuring (a) the quantum yields of CO2 fixation and photosystem II (PSII) photochemistry, (b) the pigments of the xanthophyll cycle, (c) the concentrations of active and inactive PSII reaction centers, and (d) the synthesis of core components of PSII reaction centers. Measurements were made on fully expanded leaves grown at 14[deg]C, both before and during the first 48 h after transfer of these plants to 25[deg]C. Our findings indicate that zeaxanthin-related quenching of absorbed excitation energy at PSII is, quantitatively, the most important factor determining the depressed photosynthetic efficiency in 14[deg]C-grown plants. Despite the photoprotection afforded by zeaxanthin-related quenching of absorbed excitation energy, a significant and more persistent depression of photosynthetic efficiency appears to result from low temperature-induced inhibition of the rate at which damaged PSII centers can be replaced.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cooper P., Ort D. R. Changes in protein synthesis induced in tomato by chilling. Plant Physiol. 1988 Oct;88(2):454–461. doi: 10.1104/pp.88.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmore A. M., Yamamoto H. Y. Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport. Plant Physiol. 1991 Jun;96(2):635–643. doi: 10.1104/pp.96.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nie G. Y., Baker N. R. Modifications to Thylakoid Composition during Development of Maize Leaves at Low Growth Temperatures. Plant Physiol. 1991 Jan;95(1):184–191. doi: 10.1104/pp.95.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta. 1977 Apr 11;460(1):113–125. doi: 10.1016/0005-2728(77)90157-8. [DOI] [PubMed] [Google Scholar]