Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jun;108(2):769–776. doi: 10.1104/pp.108.2.769

Hormonal Regulation of Organic and Phosphoric Acid Release by Barley Aleurone Layers and Scutella.

Y M Drozdowicz 1, R L Jones 1
PMCID: PMC157399  PMID: 12228509

Abstract

The release of acid from the aleurone layer and scutellum of barley (Hordeum vulgare L. cv Himalaya) was investigated. Aleurone layers isolated from mature barley grains acidify the external medium by releasing organic and phosphoric acids. Gibberellic acid and abscisic acid stimulate acid release 2-fold over control tissue incubated in 10 mM CACl2. Gibberellic acid causes medium acidification by stimulating the release of phosphoric and citric acids, whereas abscisic acid stimulates the release of malic acid. The accumulation of these acids in the incubation medium buffers the medium against changes in pH, particularly between pH 4 and 5. The amounts of amino acids that accumulate in the medium are low (2-12 nmol/layer) compared to other organic and phosphoric acids (100-500 nmol/layer). The scutellum does not play a major role in medium acidification but participates in the uptake of organic acids. The organic acid composition of the starchy endosperm changes after 3 d of imbibition; malic, succinic, and lactic acids decrease, whereas citric and phosphoric acids remain unchanged or increase. These results indicate that during postgerminative growth, the acidity of the starchy endosperm is maintained by acid production by the aleurone layer.

Full Text

The Full Text of this article is available as a PDF (887.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Csonka L. N., Ikeda T. P., Fletcher S. A., Kustu S. The accumulation of glutamate is necessary for optimal growth of Salmonella typhimurium in media of high osmolality but not induction of the proU operon. J Bacteriol. 1994 Oct;176(20):6324–6333. doi: 10.1128/jb.176.20.6324-6333.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Deikman J., Jones R. L. Regulation of the accumulation of mRNA for alpha-amylase in barley aleurone. Plant Physiol. 1986 Mar;80(3):672–675. doi: 10.1104/pp.80.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hamabata A., García-Maya M., Romero T., Bernal-Lugo I. Kinetics of the Acidification Capacity of Aleurone Layer and Its Effect upon Solubilization of Reserve Substances from Starchy Endosperm of Wheat. Plant Physiol. 1988 Mar;86(3):643–644. doi: 10.1104/pp.86.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hammerton R. W., Ho T. H. Hormonal regulation of the development of protease and carboxypeptidase activities in barley aleurone layers. Plant Physiol. 1986 Mar;80(3):692–697. doi: 10.1104/pp.80.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heimovaara-Dijkstra S., Heistek J. C., Wang M. Counteractive Effects of ABA and GA3 on Extracellular and Intracellular pH and Malate in Barley Aleurone. Plant Physiol. 1994 Sep;106(1):359–365. doi: 10.1104/pp.106.1.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones R. L. Gibberellic Acid and Ion Release from Barley Aleurone Tissue: Evidence for Hormone-dependent Ion Transport Capacity. Plant Physiol. 1973 Oct;52(4):303–308. doi: 10.1104/pp.52.4.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jones R. L., Jacobsen J. V. Regulation of synthesis and transport of secreted proteins in cereal aleurone. Int Rev Cytol. 1991;126:49–88. doi: 10.1016/s0074-7696(08)60682-8. [DOI] [PubMed] [Google Scholar]
  8. Koehler S. M., Ho T. H. A major gibberellic Acid-induced barley aleurone cysteine proteinase which digests hordein : purification and characterization. Plant Physiol. 1990 Sep;94(1):251–258. doi: 10.1104/pp.94.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin L. S., Ho T. H. Mode of action of abscisic Acid in barley aleurone layers : induction of new proteins by abscisic Acid. Plant Physiol. 1986 Sep;82(1):289–297. doi: 10.1104/pp.82.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Macnicol P. K., Jacobsen J. V. Endosperm acidification and related metabolic changes in the developing barley grain. Plant Physiol. 1992 Mar;98(3):1098–1104. doi: 10.1104/pp.98.3.1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nyman S., Sopanen T., Mikola J. Regulation of development of leucine uptake activity by glutamine in the scutellum of germinating barley grain. Plant Physiol. 1983 Sep;73(1):135–141. doi: 10.1104/pp.73.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Salmenkallio M., Sopanen T. Amino Acid and Peptide uptake in the scutella of germinating grains of barley, wheat, rice, and maize. Plant Physiol. 1989 Apr;89(4):1285–1291. doi: 10.1104/pp.89.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sopanen T., Uuskallio M., Nyman S. Characteristics and development of leucine transport activity in the scutellum of germinating barley grain. Plant Physiol. 1980 Feb;65(2):249–253. doi: 10.1104/pp.65.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Väisänen E., Sopanen T. Uptake of proline by the scutellum of germinating barley grain. Plant Physiol. 1986 Apr;80(4):902–907. doi: 10.1104/pp.80.4.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weselake R. J., Macgregor A. W., Hill R. D., Duckworth H. W. Purification and characteristics of an endogenous alpha-amylase inhibitor from barley kernels. Plant Physiol. 1983 Dec;73(4):1008–1012. doi: 10.1104/pp.73.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES