Abstract
We examined the response of leaves of 3-week-old maize (Zea mays L.) to short-term (5 h) fumigation with O3-enriched air (0, 0.12, 0.24, or 0.36 [mu]L/L). Older leaves and leaf tissue developed more severe visible damage at higher external O3 concentrations. To investigate the immediate effect of O3 exposure on the accumulation of newly synthesized leaf proteins, leaves were labeled with [35S]methionine after 2 h and fumigated for an additional 3 h. O3-induced alterations of leaf proteins were observed in a concentration-dependent manner. There was a significant decrease in [35S]methionine incorporation into protein at the highest O3 concentration. Developmental differences in accumulation of de novo-synthesized leaf proteins were observed when the leaf tip, middle, and basal sections were labeled under 0 [mu]L/L O3, and additional changes were apparent upon exposure to increasing O3 concentrations. Changes in leaf protein synthesis were observed in the absence of visible leaf injury. Subcellular fractionation revealed O3-induced alterations in soluble and membrane-associated proteins. A number of thylakoid membrane-associated proteins showed specific increases in response to O3 fumigation. In contrast, the synthesis of a 32-kD polypeptide associated with thylakoid membranes was reduced in response to O3 fumigation in parallel with reduced incorporation of [35S]methionine into protein. Immunoprecipitation identified this polypeptide as the D1 protein of photosystem II. A reduction in the accumulation of newly synthesized D1 could have consequences for the efficiency of photosynthesis and other cellular processes.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellemare G., Bartlett S. G., Chua N. H. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem. 1982 Jul 10;257(13):7762–7767. [PubMed] [Google Scholar]
- Dann M. S., Pell E. J. Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foliage. Plant Physiol. 1989 Sep;91(1):427–432. doi: 10.1104/pp.91.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenberg B. M., Gaba V., Mattoo A. K., Edelman M. Identification of a primary in vivo degradation product of the rapidly-turning-over 32 kd protein of photosystem II. EMBO J. 1987 Oct;6(10):2865–2869. doi: 10.1002/j.1460-2075.1987.tb02588.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Landry L. G., Pell E. J. Modification of Rubisco and Altered Proteolytic Activity in O3-Stressed Hybrid Poplar (Populus maximowizii x trichocarpa). Plant Physiol. 1993 Apr;101(4):1355–1362. doi: 10.1104/pp.101.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattoo A. K., Hoffman-Falk H., Marder J. B., Edelman M. Regulation of protein metabolism: Coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1380–1384. doi: 10.1073/pnas.81.5.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mustafa M. G. Biochemical basis of ozone toxicity. Free Radic Biol Med. 1990;9(3):245–265. doi: 10.1016/0891-5849(90)90035-h. [DOI] [PubMed] [Google Scholar]
- Ohad I., Kyle D. J., Arntzen C. J. Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol. 1984 Aug;99(2):481–485. doi: 10.1083/jcb.99.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salter A. H., Virgin I., Hagman A., Andersson B. On the molecular mechanism of light-induced D1 protein degradation in photosystem II core particles. Biochemistry. 1992 Apr 28;31(16):3990–3998. doi: 10.1021/bi00131a014. [DOI] [PubMed] [Google Scholar]
- Schmitt R., Sandermann H., Jr Biochemical response of Norway spruce (Picea abies (L.) karst.) towards 14-month exposure to ozone and acid mist: part II--Effects on protein biosynthesis. Environ Pollut. 1990;64(3-4):367–373. doi: 10.1016/0269-7491(90)90058-k. [DOI] [PubMed] [Google Scholar]
- Seinfeld J. H. Urban air pollution: state of the science. Science. 1989 Feb 10;243(4892):745–752. doi: 10.1126/science.243.4892.745. [DOI] [PubMed] [Google Scholar]
- Sharma Y. K., Davis K. R. Ozone-Induced Expression of Stress-Related Genes in Arabidopsis thaliana. Plant Physiol. 1994 Aug;105(4):1089–1096. doi: 10.1104/pp.105.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vierling E., Mishkind M. L., Schmidt G. W., Key J. L. Specific heat shock proteins are transported into chloroplasts. Proc Natl Acad Sci U S A. 1986 Jan;83(2):361–365. doi: 10.1073/pnas.83.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]