Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):929–937. doi: 10.1104/pp.108.3.929

Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants.

B Zhu 1, T H Chen 1, P H Li 1
PMCID: PMC157442  PMID: 7630973

Abstract

Osmotin-like proteins are encoded by at least six members of a multigene family in Solanum commersonii. A genomic clone (lambda pGEM2a-7) that contains two osmotin-like protein genes (OSML13 and OSML81) arranged in the same transcriptional orientation has been isolated. Restriction mapping and sequence analysis indicated that the two intronless genes correspond to the previously characterized pA13 and pA81 cDNAs. To study the transcriptional activation of OSML13 and OSML81 promoters, the 5' flanking DNA sequence (-1078 to +35 of OSML13 and -1054 to +41 of OSML81) was fused to the beta-glucoronidase (GUS) coding region, and the chimeric gene fusions were introduced into wild potato (S. commersonii) plants via Agrobacterium-mediated transformation. Analysis of the chimeric gene expression in transgenic potato plants showed that both 5' flanking DNA sequences are sufficient to impart GUS inducibility by abscisic acid, NaCl, salicylic acid, wounding, and fungal infection. Low temperature activated both chimeric genes only slightly. Infection with Phytophthora infestans resulted in strong GUS expression from both chimeric genes primarily in the sites of pathogen invasion, suggesting a limited diffusion of fungal infection-mediated signals. The expression patterns of both osmotin-like protein genes implicate their dual functions in osmotic stress and plant pathogen defense.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Cao H., Bowling S. A., Gordon A. S., Dong X. Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell. 1994 Nov;6(11):1583–1592. doi: 10.1105/tpc.6.11.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eyal Y., Meller Y., Lev-Yadun S., Fluhr R. A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J. 1993 Aug;4(2):225–234. doi: 10.1046/j.1365-313x.1993.04020225.x. [DOI] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  5. Hajela R. K., Horvath D. P., Gilmour S. J., Thomashow M. F. Molecular Cloning and Expression of cor (Cold-Regulated) Genes in Arabidopsis thaliana. Plant Physiol. 1990 Jul;93(3):1246–1252. doi: 10.1104/pp.93.3.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hart C. M., Nagy F., Meins F., Jr A 61 bp enhancer element of the tobacco beta-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Mol Biol. 1993 Jan;21(1):121–131. doi: 10.1007/BF00039623. [DOI] [PubMed] [Google Scholar]
  7. Hennig J., Dewey R. E., Cutt J. R., Klessig D. F. Pathogen, salicylic acid and developmental dependent expression of a beta-1,3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J. 1993 Sep;4(3):481–493. doi: 10.1046/j.1365-313x.1993.04030481.x. [DOI] [PubMed] [Google Scholar]
  8. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Larosa P. C., Chen Z., Nelson D. E., Singh N. K., Hasegawa P. M., Bressan R. A. Osmotin gene expression is posttranscriptionally regulated. Plant Physiol. 1992 Sep;100(1):409–415. doi: 10.1104/pp.100.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liu D., Raghothama K. G., Hasegawa P. M., Bressan R. A. Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1888–1892. doi: 10.1073/pnas.91.5.1888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Malamy J., Carr J. P., Klessig D. F., Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. doi: 10.1126/science.250.4983.1002. [DOI] [PubMed] [Google Scholar]
  12. Melchers L. S., Sela-Buurlage M. B., Vloemans S. A., Woloshuk C. P., Van Roekel J. S., Pen J., van den Elzen P. J., Cornelissen B. J. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and beta-1,3-glucanase in transgenic plants. Plant Mol Biol. 1993 Feb;21(4):583–593. doi: 10.1007/BF00014542. [DOI] [PubMed] [Google Scholar]
  13. Mundy J., Yamaguchi-Shinozaki K., Chua N. H. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1406–1410. doi: 10.1073/pnas.87.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nelson D. E., Raghothama K. G., Singh N. K., Hasegawa P. M., Bressan R. A. Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol Biol. 1992 Jul;19(4):577–588. doi: 10.1007/BF00026784. [DOI] [PubMed] [Google Scholar]
  15. Pēna-Cortés H., Sánchez-Serrano J. J., Mertens R., Willmitzer L., Prat S. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9851–9855. doi: 10.1073/pnas.86.24.9851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raghothama K. G., Liu D., Nelson D. E., Hasegawa P. M., Bressan R. A. Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter. Plant Mol Biol. 1993 Dec;23(6):1117–1128. doi: 10.1007/BF00042346. [DOI] [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Singh N. K., Nelson D. E., Kuhn D., Hasegawa P. M., Bressan R. A. Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential. Plant Physiol. 1989 Jul;90(3):1096–1101. doi: 10.1104/pp.90.3.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Uknes S., Dincher S., Friedrich L., Negrotto D., Williams S., Thompson-Taylor H., Potter S., Ward E., Ryals J. Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell. 1993 Feb;5(2):159–169. doi: 10.1105/tpc.5.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vernooij B., Friedrich L., Morse A., Reist R., Kolditz-Jawhar R., Ward E., Uknes S., Kessmann H., Ryals J. Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Is Required in Signal Transduction. Plant Cell. 1994 Jul;6(7):959–965. doi: 10.1105/tpc.6.7.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Xu Y., Chang PFL., Liu D., Narasimhan M. L., Raghothama K. G., Hasegawa P. M., Bressan R. A. Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate. Plant Cell. 1994 Aug;6(8):1077–1085. doi: 10.1105/tpc.6.8.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhu B., Chen T. H., Li P. H. Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol Biol. 1993 Feb;21(4):729–735. doi: 10.1007/BF00014558. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES