Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):975–983. doi: 10.1104/pp.108.3.975

Increased Accumulation of Carbohydrates and Decreased Photosynthetic Gene Transcript Levels in Wheat Grown at an Elevated CO2 Concentration in the Field.

G Nie 1, D L Hendrix 1, A N Webber 1, B A Kimball 1, S P Long 1
PMCID: PMC157447  PMID: 12228521

Abstract

Repression of photosynthetic genes by increased soluble carbohydrate concentrations may explain acclimation of photosynthesis to elevated CO2 concentration. This hypothesis was examined in a field crop of spring wheat (Triticum aestivum L.) grown at both ambient (approximately 360 [mu]mol mol-1) and elevated (550 [mu]mol mol-1) atmospheric CO2 concentrations using free-air CO2 enrichment at Maricopa, Arizona. The correspondence of steady-state levels of mRNA transcripts (coding for the 83-kD photosystem I apoprotein, sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, phosphoglycerokinase, and the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase) with leaf carbohydrate concentrations (glucose-6-phosphate, glucose, fructose, sucrose, fructans, and starch) was examined at different stages of crop and leaf development and through the diurnal cycle. Overall only a weak correspondence between increased soluble carbohydrate concentrations and decreased levels for nuclear gene transcripts was found. The difference in soluble carbohydrate concentration between leaves grown at elevated and current ambient CO2 concentrations diminished with crop development, whereas the difference in transcript levels increased. In the flag leaf, soluble carbohydrate concentrations declined markedly with the onset of grain filling; yet transcript levels also declined. The results suggest that, whereas the hypothesis may hold well in model laboratory systems, many other factors modified its significance in this field wheat crop.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamska I., Scheel B., Kloppstech K. Circadian oscillations of nuclear-encoded chloroplast proteins in pea (Pisum sativum). Plant Mol Biol. 1991 Nov;17(5):1055–1065. doi: 10.1007/BF00037144. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Dron M., Rahire M., Rochaix J. D. Sequence of the chloroplast DNA region of Chlamydomonas reinhardii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genes. J Mol Biol. 1982 Dec 25;162(4):775–793. doi: 10.1016/0022-2836(82)90547-2. [DOI] [PubMed] [Google Scholar]
  4. Goldschmidt E. E., Huber S. C. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol. 1992 Aug;99(4):1443–1448. doi: 10.1104/pp.99.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hendrix D. L., Wei Y. A. Bemisiose: an unusual trisaccharide in Bemisia honeydew. Carbohydr Res. 1994 Feb 3;253:329–334. doi: 10.1016/0008-6215(94)80081-2. [DOI] [PubMed] [Google Scholar]
  6. Peet M. M., Huber S. C., Patterson D. T. Acclimation to High CO(2) in Monoecious Cucumbers : II. Carbon Exchange Rates, Enzyme Activities, and Starch and Nutrient Concentrations. Plant Physiol. 1986 Jan;80(1):63–67. doi: 10.1104/pp.80.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Peterson L. W., Kleinkopf G. E., Huffaker R. C. Evidence for lack of turnover of ribulose 1,5-diphosphate carboxylase in barley leaves. Plant Physiol. 1973 Jun;51(6):1042–1045. doi: 10.1104/pp.51.6.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Piechulla B., Gruissem W. Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. EMBO J. 1987 Dec 1;6(12):3593–3599. doi: 10.1002/j.1460-2075.1987.tb02690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pilgrim M. L., McClung C. R. Differential Involvement of the Circadian Clock in the Expression of Genes Required for Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Synthesis, Assembly, and Activation in Arabidopsis thaliana. Plant Physiol. 1993 Oct;103(2):553–564. doi: 10.1104/pp.103.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Raines C. A., Lloyd J. C., Willingham N. M., Potts S., Dyer T. A. cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-1,6-bisphosphatases. Eur J Biochem. 1992 May 1;205(3):1053–1059. doi: 10.1111/j.1432-1033.1992.tb16873.x. [DOI] [PubMed] [Google Scholar]
  11. Sasek T. W., Delucia E. H., Strain B. R. Reversibility of Photosynthetic Inhibition in Cotton after Long-Term Exposure to Elevated CO(2) Concentrations. Plant Physiol. 1985 Jul;78(3):619–622. doi: 10.1104/pp.78.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thomas R. B., Strain B. R. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol. 1991 Jun;96(2):627–634. doi: 10.1104/pp.96.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Xu R., Bingham S. E., Webber A. N. Increased mRNA accumulation in a psaB frame-shift mutant of Chlamydomonas reinhardtii suggests a role for translation in psaB mRNA stability. Plant Mol Biol. 1993 Jun;22(3):465–474. doi: 10.1007/BF00015976. [DOI] [PubMed] [Google Scholar]
  15. Yelle S., Beeson R. C., Trudel M. J., Gosselin A. Acclimation of Two Tomato Species to High Atmospheric CO(2): I. Sugar and Starch Concentrations. Plant Physiol. 1989 Aug;90(4):1465–1472. doi: 10.1104/pp.90.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES