Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):1013–1022. doi: 10.1104/pp.108.3.1013

Effects of light and chloroplast functional state on expression of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in long hypocotyl (hy) mutants and wild-type Arabidopsis thaliana.

T R Conley 1, M C Shih 1
PMCID: PMC157451  PMID: 7630933

Abstract

In a previous study of Arabidopsis thaliana (J. Dewdney, T.R. Conley, M.-C. Shih, H.M. Goodman [1993] Plant Physiol 103: 1115-1121), it was postulated that both blue light receptor- and phytochrome-mediated pathways contribute to regulation of the nuclear genes encoding A and B subunits of glyceraldehyde-3-phosphate dehydrogenase (GAPA and GAPB). Here were report on the involvement of a nuclear gene encoding a putative blue-light receptor (HY4) and of a nuclear gene encoding phytochrome A apoprotein (PHYA) in regulation of the GAPA and GAPB genes in response to blue and far-red light. Continuous light irradiation experiments with the hy4 mutant demonstrate that the HY4 gene product is required for full expression of GAPA, GAPB, and one or more of the nuclear genes encoding small subunits of of ribulose-1,5-bisphosphate carboxylase/oxygenase. Continuous light irradiation and fluence-response studies with the phyA-101 mutant show that phytochrome A functions in far-red light regulation of GAPA, GAPB, nuclear genes encoding small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, and CAB genes. Phytochromes A and B alone either do not participate in red light-mediated gene regulation or have redundant functions, as shown by analysis of phyA-101 and phyB-1 single mutants. In addition, the hypothesis that chloroplast-nucleus interactions affect GAPA and GAPB gene regulation was tested. Herbicide-mediated photooxidative damage to chloroplasts in A thaliana seedlings strongly decreased the maximum amount of GAPA and GAPB steady-state mRNA detected in continuous-light irradiation experiments. Full expression of the GAPB genes is dependent on the presence of functional chloroplasts.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  2. Chamovitz D., Pecker I., Hirschberg J. The molecular basis of resistance to the herbicide norflurazon. Plant Mol Biol. 1991 Jun;16(6):967–974. doi: 10.1007/BF00016069. [DOI] [PubMed] [Google Scholar]
  3. Clack T., Mathews S., Sharrock R. A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol. 1994 Jun;25(3):413–427. doi: 10.1007/BF00043870. [DOI] [PubMed] [Google Scholar]
  4. Conley T. R., Park S. C., Kwon H. B., Peng H. P., Shih M. C. Characterization of cis-acting elements in light regulation of the nuclear gene encoding the A subunit of chloroplast isozymes of glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. Mol Cell Biol. 1994 Apr;14(4):2525–2533. doi: 10.1128/mcb.14.4.2525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dehesh K., Franci C., Parks B. M., Seeley K. A., Short T. W., Tepperman J. M., Quail P. H. Arabidopsis HY8 locus encodes phytochrome A. Plant Cell. 1993 Sep;5(9):1081–1088. doi: 10.1105/tpc.5.9.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dewdney J., Conley T. R., Shih M. C., Goodman H. M. Effects of blue and red light on expression of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana. Plant Physiol. 1993 Dec;103(4):1115–1121. doi: 10.1104/pp.103.4.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Fluhr R., Chua N. H. Developmental regulation of two genes encoding ribulose-bisphosphate carboxylase small subunit in pea and transgenic petunia plants: Phytochrome response and blue-light induction. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2358–2362. doi: 10.1073/pnas.83.8.2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gao J., Kaufman L. S. Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene. Plant Physiol. 1994 Apr;104(4):1251–1257. doi: 10.1104/pp.104.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaufman L. S., Thompson W. F., Briggs W. R. Different Red Light Requirements for Phytochrome-Induced Accumulation of cab RNA and rbcS RNA. Science. 1984 Dec 21;226(4681):1447–1449. doi: 10.1126/science.226.4681.1447. [DOI] [PubMed] [Google Scholar]
  11. Kwon H. B., Park S. C., Peng H. P., Goodman H. M., Dewdney J., Shih M. C. Identification of a light-responsive region of the nuclear gene encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Plant Physiol. 1994 May;105(1):357–367. doi: 10.1104/pp.105.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leutwiler L. S., Meyerowitz E. M., Tobin E. M. Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 1986 May 27;14(10):4051–4064. doi: 10.1093/nar/14.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagatani A., Reed J. W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. doi: 10.1104/pp.102.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parks B. M., Quail P. H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. doi: 10.1105/tpc.5.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pilgrim M. L., Caspar T., Quail P. H., McClung C. R. Circadian and light-regulated expression of nitrate reductase in Arabidopsis. Plant Mol Biol. 1993 Oct;23(2):349–364. doi: 10.1007/BF00029010. [DOI] [PubMed] [Google Scholar]
  16. Quail P. H., Briggs W. R., Chory J., Hangarter R. P., Harberd N. P., Kendrick R. E., Koornneef M., Parks B., Sharrock R. A., Schafer E. Spotlight on Phytochrome Nomenclature. Plant Cell. 1994 Apr;6(4):468–471. doi: 10.1105/tpc.6.4.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
  18. Rapp J. C., Mullet J. E. Chloroplast transcription is required to express the nuclear genes rbcS and cab. Plastid DNA copy number is regulated independently. Plant Mol Biol. 1991 Oct;17(4):813–823. doi: 10.1007/BF00037063. [DOI] [PubMed] [Google Scholar]
  19. Reed J. W., Nagatani A., Elich T. D., Fagan M., Chory J. Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol. 1994 Apr;104(4):1139–1149. doi: 10.1104/pp.104.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shih M. C., Goodman H. M. Differential light regulated expression of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenase in Nicotiana tabacum. EMBO J. 1988 Apr;7(4):893–898. doi: 10.1002/j.1460-2075.1988.tb02893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shih M. C., Heinrich P., Goodman H. M. Cloning and chromosomal mapping of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate-dehydrogenase from Arabidopsis thaliana. Gene. 1991 Aug 15;104(2):133–138. doi: 10.1016/0378-1119(91)90242-4. [DOI] [PubMed] [Google Scholar]
  23. Shinozaki K., Sugiura M. The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Gene. 1982 Nov;20(1):91–102. doi: 10.1016/0378-1119(82)90090-7. [DOI] [PubMed] [Google Scholar]
  24. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Susek R. E., Ausubel F. M., Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell. 1993 Sep 10;74(5):787–799. doi: 10.1016/0092-8674(93)90459-4. [DOI] [PubMed] [Google Scholar]
  26. Wehmeyer B., Cashmore A. R., Schäfer E. Photocontrol of the Expression of Genes Encoding Chlorophyll a/b Binding Proteins and Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase in Etiolated Seedlings of Lycopersicon esculentum (L.) and Nicotiana tabacum (L.). Plant Physiol. 1990 Jul;93(3):990–997. doi: 10.1104/pp.93.3.990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES