Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):1119–1126. doi: 10.1104/pp.108.3.1119

C4 isoform of NADP-malate dehydrogenase. cDNA cloning and expression in leaves of C4, C3, and C3-C4 intermediate species of Flaveria.

B McGonigle 1, T Nelson 1
PMCID: PMC157464  PMID: 7630939

Abstract

In C4 plants of the NADP-malic enzyme type, an abundant, mesophyll cell-localized NADP-malate dehydrogenase (MDH) acts to convert oxaloacetate, the initial product of carbon fixation, to malate before it is shuttled to the bundle sheath. Since NADP-MDH has different but important roles in leaves of C3 and C4 plants, we have cloned and characterized a nearly full-length cDNA encoding NADP-MDH from Flaveria trinervia (C4) to permit comparative structure/expression studies within the genus flaveria. The dicot genus Flaveria includes C3-C4 intermediate species, as well as C3 and C4 species. We show that the previously noted differences in NADP-MDH activity levels among C3, C4, and C3-C4 Flaveria species are in part due to interspecific differences in mRNA accumulation. We also show that the NADP-MDH gene appears to be present as a single copy among different Flaveria species, suggesting that a pre-existing gene has been reregulated during the evolution from C3 to C4 plants to accommodate the abundance and localization requirements of the C4 cycle.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostino A., Jeffrey P., Hatch M. D. Amino Acid Sequence and Molecular Weight of Native NADP Malate Dehydrogenase from the C(4) Plant Zea mays. Plant Physiol. 1992 Apr;98(4):1506–1510. doi: 10.1104/pp.98.4.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birktoft J. J., Fernley R. T., Bradshaw R. A., Banaszak L. J. Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6166–6170. doi: 10.1073/pnas.79.20.6166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Börsch D., Westhoff P. Primary structure of NADP-dependent malic enzyme in the dicotyledonous C4 plant Flaveria trinervia. FEBS Lett. 1990 Oct 29;273(1-2):111–115. doi: 10.1016/0014-5793(90)81063-t. [DOI] [PubMed] [Google Scholar]
  5. Cheng S. H., Moore B. D., Edwards G. E., Ku M. S. Photosynthesis in Flaveria brownii, a C(4)-Like Species: Leaf Anatomy, Characteristics of CO(2) Exchange, Compartmentation of Photosynthetic Enzymes, and Metabolism of CO(2). Plant Physiol. 1988 Aug;87(4):867–873. doi: 10.1104/pp.87.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crétin C., Luchetta P., Joly C., Decottignies P., Lepiniec L., Gadal P., Sallantin M., Huet J. C., Pernollet J. C. Primary structure of sorghum malate dehydrogenase (NADP) deduced from cDNA sequence. Homology with malate dehydrogenase (NAD). Eur J Biochem. 1990 Sep 11;192(2):299–303. doi: 10.1111/j.1432-1033.1990.tb19227.x. [DOI] [PubMed] [Google Scholar]
  7. Crétin C., Luchetta P., Joly C., Miginiac-Maslow M., Decottignies P., Jacquot J. P., Vidal J., Gadal P. Identification of a cDNA clone for sorghum leaf malate dehydrogenase (NADP). Light-dependent mRNA accumulation. Eur J Biochem. 1988 Jun 15;174(3):497–501. doi: 10.1111/j.1432-1033.1988.tb14126.x. [DOI] [PubMed] [Google Scholar]
  8. Cushman J. C., Meyer G., Michalowski C. B., Schmitt J. M., Bohnert H. J. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell. 1989 Jul;1(7):715–725. doi: 10.1105/tpc.1.7.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Gietl C. Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochim Biophys Acta. 1992 Jun 19;1100(3):217–234. doi: 10.1016/0167-4838(92)90476-t. [DOI] [PubMed] [Google Scholar]
  12. Hatch M. D., Slack C. R. NADP-specific malate dehydrogenase and glycerate kinase in leaves and evidence for their location in chloroplasts. Biochem Biophys Res Commun. 1969 Mar 10;34(5):589–593. doi: 10.1016/0006-291x(69)90778-5. [DOI] [PubMed] [Google Scholar]
  13. Hermans J., Westhoff P. Homologous genes for the C4 isoform of phosphoenolpyruvate carboxylase in a C3 and a C4 Flaveria species. Mol Gen Genet. 1992 Aug;234(2):275–284. doi: 10.1007/BF00283848. [DOI] [PubMed] [Google Scholar]
  14. Issakidis E., Decottignies P., Miginiac-Maslow M. A thioredoxin-independent fully active NADP-malate dehydrogenase obtained by site-directed mutagenesis. FEBS Lett. 1993 Apr 19;321(1):55–58. doi: 10.1016/0014-5793(93)80620-a. [DOI] [PubMed] [Google Scholar]
  15. Jacobson A. Purification and fractionation of poly(A)+ RNA. Methods Enzymol. 1987;152:254–261. doi: 10.1016/0076-6879(87)52028-6. [DOI] [PubMed] [Google Scholar]
  16. Ku M. S., Monson R. K., Littlejohn R. O., Nakamoto H., Fisher D. B., Edwards G. E. Photosynthetic Characteristics of C(3)-C(4) Intermediate Flaveria Species : I. Leaf Anatomy, Photosynthetic Responses to O(2) and CO(2), and Activities of Key Enzymes in the C(3) and C(4) Pathways. Plant Physiol. 1983 Apr;71(4):944–948. doi: 10.1104/pp.71.4.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Langdale J. A., Metzler M. C., Nelson T. The argentia mutation delays normal development of photosynthetic cell-types in Zea mays. Dev Biol. 1987 Jul;122(1):243–255. doi: 10.1016/0012-1606(87)90349-6. [DOI] [PubMed] [Google Scholar]
  18. Langdale J. A., Zelitch I., Miller E., Nelson T. Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize. EMBO J. 1988 Dec 1;7(12):3643–3651. doi: 10.1002/j.1460-2075.1988.tb03245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lemaire M., Schmitter J. M., Issakidis E., Miginiac-Maslow M., Gadal P., Decottignies P. Essential histidine at the active site of sorghum leaf NADP-dependent malate dehydrogenase. J Biol Chem. 1994 Nov 4;269(44):27291–27296. [PubMed] [Google Scholar]
  20. Luchetta P., Cretin C., Gadal P. Structure and characterization of the Sorghum vulgare gene encoding NADP-malate dehydrogenase. Gene. 1990 May 14;89(2):171–177. doi: 10.1016/0378-1119(90)90003-a. [DOI] [PubMed] [Google Scholar]
  21. Luchetta P., Crétin C., Gadal P. Organization and expression of the two homologous genes encoding the NADP-malate dehydrogenase in Sorghum vulgare leaves. Mol Gen Genet. 1991 Sep;228(3):473–481. doi: 10.1007/BF00260642. [DOI] [PubMed] [Google Scholar]
  22. Nelson T., Harpster M. H., Mayfield S. P., Taylor W. C. Light-regulated gene expression during maize leaf development. J Cell Biol. 1984 Feb;98(2):558–564. doi: 10.1083/jcb.98.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rajeevan M. S., Bassett C. L., Hughes D. W. Isolation and characterization of cDNA clones for NADP-malic enzyme from leaves of Flaveria: transcript abundance distinguishes C3, C3-C4 and C4 photosynthetic types. Plant Mol Biol. 1991 Sep;17(3):371–383. doi: 10.1007/BF00040632. [DOI] [PubMed] [Google Scholar]
  24. Reng W., Riessland R., Scheibe R., Jaenicke R. Cloning, site-specific mutagenesis, expression and characterization of full-length chloroplast NADP-malate dehydrogenase from Pisum sativum. Eur J Biochem. 1993 Oct 1;217(1):189–197. doi: 10.1111/j.1432-1033.1993.tb18233.x. [DOI] [PubMed] [Google Scholar]
  25. Rosche E., Streubel M., Westhoff P. Primary structure of the photosynthetic pyruvate orthophosphate dikinase of the C3 plant Flaveria pringlei and expression analysis of pyruvate orthophosphate dikinase sequences in C3, C3-C4 and C4 Flaveria species. Plant Mol Biol. 1994 Oct;26(2):763–769. doi: 10.1007/BF00013761. [DOI] [PubMed] [Google Scholar]
  26. Rosche E., Westhoff P. Primary structure of pyruvate, orthophosphate dikinase in the dicotyledonous C4 plant Flaveria trinervia. FEBS Lett. 1990 Oct 29;273(1-2):116–121. doi: 10.1016/0014-5793(90)81064-u. [DOI] [PubMed] [Google Scholar]
  27. Sheen J. Y., Bogorad L. Differential expression of C4 pathway genes in mesophyll and bundle sheath cells of greening maize leaves. J Biol Chem. 1987 Aug 25;262(24):11726–11730. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES