Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):1127–1132. doi: 10.1104/pp.108.3.1127

Only the Mature Form of the Plastidic Chorismate Synthase Is Enzymatically Active.

J M Henstrand 1, J Schmid 1, N Amrhein 1
PMCID: PMC157465  PMID: 12228531

Abstract

Coding regions of a cDNA for precursor and mature chorismate synthase (CS), a plastidic enzyme, from Corydalis sempervirens were expressed in Escherichia coli as translational fusions to glutathione-S-transferase. Fusion proteins were purified, and precursor and mature forms of CS were then released by proteolytic cleavage with factor Xa. Although mature CS was enzymatically active after release, activity could be detected neither for the precursor CS nor for corresponding glutathione-S-transferase fusion proteins. In contrast, two other shikimate pathway enzymes (shikimate kinase and 5-enol-pyruvylshikimate-3-phosphate synthase) have previously been shown to be as enzymatically active as their respective higher molecular weight precursors. By expression of unfused, mature CS from C. sempervirens in E. coli, it was possible to obtain large quantities of enzymatically active CS protein compared to yields from plant cell cultures. Expression levels in E. coli approached 1% of total soluble protein. No differences were found between authentic CS isolated from cell cultures and CS expressed in and purified from E. coli, which made possible a more detailed biochemical characterization of CS. Quaternary structure analysis of the purified mature CS indicated that the enzyme exists as a dimer, in contrast to the active tetrameric structures determined for E. coli and Neurospora crassa enzymes.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Della-Cioppa G., Bauer S. C., Klein B. K., Shah D. M., Fraley R. T., Kishore G. M. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6873–6877. doi: 10.1073/pnas.83.18.6873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gavel Y., von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 1990 Feb 26;261(2):455–458. doi: 10.1016/0014-5793(90)80614-o. [DOI] [PubMed] [Google Scholar]
  3. Hasan N., Nester E. W. Purification and characterization of NADPH-dependent flavin reductase. An enzyme required for the activation of chorismate synthase in Bacillus subtilis. J Biol Chem. 1978 Jul 25;253(14):4987–4992. [PubMed] [Google Scholar]
  4. Lumsden J., Coggins J. R. The subunit structure of the arom multienzyme complex of Neurospora crassa. A possible pentafunctional polypeptide chain. Biochem J. 1977 Mar 1;161(3):599–607. doi: 10.1042/bj1610599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ramjee M. K., Coggins J. R., Thorneley R. N. A continuous, anaerobic spectrophotometric assay for chorismate synthase activity that utilizes photoreduced flavin mononucleotide. Anal Biochem. 1994 Jul;220(1):137–141. doi: 10.1006/abio.1994.1309. [DOI] [PubMed] [Google Scholar]
  6. Schaller A., Windhofer V., Amrhein N. Purification of chorismate synthase from a cell culture of the higher plant Corydalis sempervirens Pers. Arch Biochem Biophys. 1990 Nov 1;282(2):437–442. doi: 10.1016/0003-9861(90)90141-k. [DOI] [PubMed] [Google Scholar]
  7. Schmid J., Schaller A., Leibinger U., Boll W., Amrhein N. The in-vitro synthesized tomato shikimate kinase precursor is enzymatically active and is imported and processed to the mature enzyme by chloroplasts. Plant J. 1992 May;2(3):375–383. [PubMed] [Google Scholar]
  8. White P. J., Millar G., Coggins J. R. The overexpression, purification and complete amino acid sequence of chorismate synthase from Escherichia coli K12 and its comparison with the enzyme from Neurospora crassa. Biochem J. 1988 Apr 15;251(2):313–322. doi: 10.1042/bj2510313. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES