Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):1133–1139. doi: 10.1104/pp.108.3.1133

Regulation of [beta]-Methylcrotonyl-Coenzyme A Carboxylase Activity by Biotinylation of the Apoenzyme.

X Wang 1, E S Wurtele 1, B J Nikolau 1
PMCID: PMC157466  PMID: 12228532

Abstract

Regulation of the expression of the gene(s) coding for the 78-kD, biotin-containing subunit of [beta]-methylcrotonyl-coenzyme A carboxylase (MCCase) was investigated in different organs of tomato (Lycopersicon esculantus) plants. The specific activity of MCCase is highest in extracts from roots, followed in descending order by ripe and ripening fruits, stems, and leaves. The specific activity is 10-fold higher in roots than in leaves. However, the steady-state levels of the 78-kD subunit of MCCase and its mRNA are approximately equal in both roots and leaves. Instead, the difference in MCCase activity between these two organs is directly correlated to the biotinylation status of the enzyme's biotin-containing subunit. Thus, the lower activity of MCCase in leaves is attributed to the reduced biotinylation of the biotin-containing subunit of the enzyme. Consistent with this model, a pool of nonbiotinylated enzyme is present in leaves, whereas the nonbiotinylated enzyme is undetectable in roots. The underbiotinylation of MCCase in leaves is not due to a lack of biotin in this organ, since the biotin concentration is 4- to 5-fold higher in leaves than in roots. These observations indicate that the posttranslational biotinylation of the biotin-containing sub-unit of MCCase is an important mechanism for regulating the organ-specific expression of MCCase activity.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alban C., Baldet P., Axiotis S., Douce R. Purification and Characterization of 3-Methylcrotonyl-Coenzyme A Carboxylase from Higher Plant Mitochondria. Plant Physiol. 1993 Jul;102(3):957–965. doi: 10.1104/pp.102.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alban C., Baldet P., Douce R. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J. 1994 Jun 1;300(Pt 2):557–565. doi: 10.1042/bj3000557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baldet P., Alban C., Axiotis S., Douce R. Characterization of biotin and 3-methylcrotonyl-coenzyme a carboxylase in higher plant mitochondria. Plant Physiol. 1992 Jun;99(2):450–455. doi: 10.1104/pp.99.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baldet P., Alban C., Axiotis S., Douce R. Localization of free and bound biotin in cells from green pea leaves. Arch Biochem Biophys. 1993 May 15;303(1):67–73. doi: 10.1006/abbi.1993.1256. [DOI] [PubMed] [Google Scholar]
  5. Bayer E. A., Ben-Hur H., Wilchek M. Colorimetric enzyme assays for avidin and biotin. Methods Enzymol. 1990;184:217–223. doi: 10.1016/0076-6879(90)84277-n. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Deodhar A. D., Mistry S. P. Gluconeogenesis in biotin deficiency: in vivo synthesis of pyruvate holocarboxylase in biotin deficient rat liver. Biochem Biophys Res Commun. 1969 Mar 31;34(6):755–759. doi: 10.1016/0006-291x(69)90243-5. [DOI] [PubMed] [Google Scholar]
  8. Deodhar A. D., Mistry S. P. Restoration of gluconeogenesis in biotin-deficient rats. Arch Biochem Biophys. 1969 May;131(2):507–512. doi: 10.1016/0003-9861(69)90423-8. [DOI] [PubMed] [Google Scholar]
  9. Diez T. A., Wurtele E. S., Nikolau B. J. Purification and characterization of 3-methylcrotonyl-coenzyme-A carboxylase from leaves of Zea mays. Arch Biochem Biophys. 1994 Apr;310(1):64–75. doi: 10.1006/abbi.1994.1141. [DOI] [PubMed] [Google Scholar]
  10. Edmond J., Fogelman A. M., Popják G. Mevalonate metabolism: role of kidneys. Science. 1976 Jul 9;193(4248):154–156. doi: 10.1126/science.935865. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  12. Gerbling H., Gerhardt B. Peroxisomal degradation of branched-chain 2-oxo acids. Plant Physiol. 1989 Dec;91(4):1387–1392. doi: 10.1104/pp.91.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hector M. L., Cochran B. C., Logue E. A., Fall R. R. Subcellular localization of 3-methylcrotonyl-coenzyme A carboxylase in bovine kidney. Arch Biochem Biophys. 1980 Jan;199(1):28–36. doi: 10.1016/0003-9861(80)90252-0. [DOI] [PubMed] [Google Scholar]
  14. Höpner T., Knappe J. Einbau von Biotin in beta-Methylcrotonyl-CoA-carboxylase durch Holocarboxylase-synthetase. Biochem Z. 1965 Jul 22;342(2):190–206. [PubMed] [Google Scholar]
  15. KOSOW D. P., HUANG S. C., LANE M. D. Propionyl holocarboxylase synthesis. I. Preparation and properties of the enzyme system. J Biol Chem. 1962 Dec;237:3633–3639. [PubMed] [Google Scholar]
  16. KOSOW D. P., LANE M. D. Propionyl apocarboxylase activation catalyzed by cell-free enzyme extracts. Biochem Biophys Res Commun. 1961 Jun 28;5:191–195. doi: 10.1016/0006-291x(61)90108-5. [DOI] [PubMed] [Google Scholar]
  17. KOSOW D. P., LANE M. D. Propionyl holocarboxylase formation: covalent bonding of biotin to apocarboxylase lysyl epsilon-amino groups. Biochem Biophys Res Commun. 1962 Jun 4;7:439–443. doi: 10.1016/0006-291x(62)90331-5. [DOI] [PubMed] [Google Scholar]
  18. KOSOW D. P., LANE M. D. Restoration of biotin-deficiency-induced depression of propionyl carboxylase activity in vivo and in vitro. Biochem Biophys Res Commun. 1961 Feb 24;4:92–95. doi: 10.1016/0006-291x(61)90353-9. [DOI] [PubMed] [Google Scholar]
  19. Konishi T., Sasaki Y. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3598–3601. doi: 10.1073/pnas.91.9.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  21. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  22. Moss J., Lane M. D. The biotin-dependent enzymes. Adv Enzymol Relat Areas Mol Biol. 1971;35:321–442. doi: 10.1002/9780470122808.ch7. [DOI] [PubMed] [Google Scholar]
  23. Murtif V. L., Samols D. Mutagenesis affecting the carboxyl terminus of the biotinyl subunit of transcarboxylase. Effects on biotination. J Biol Chem. 1987 Aug 25;262(24):11813–11816. [PubMed] [Google Scholar]
  24. Nikolau B. J., Wurtele E. S., Stumpf P. K. Use of streptavidin to detect biotin-containing proteins in plants. Anal Biochem. 1985 Sep;149(2):448–453. doi: 10.1016/0003-2697(85)90596-2. [DOI] [PubMed] [Google Scholar]
  25. Shellhammer J., Meinke D. Arrested Embryos from the bio1 Auxotroph of Arabidopsis thaliana Contain Reduced Levels of Biotin. Plant Physiol. 1990 Jul;93(3):1162–1167. doi: 10.1104/pp.93.3.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Song J., Wurtele E. S., Nikolau B. J. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5779–5783. doi: 10.1073/pnas.91.13.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stewart C. R., Beevers H. Gluconeogenesis from amino acids in germinating castor bean endosperm and its role in transport to the embryo. Plant Physiol. 1967 Nov;42(11):1587–1595. doi: 10.1104/pp.42.11.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang X., Wurtele E. S., Keller G., McKean A. L., Nikolau B. J. Molecular cloning of cDNAs and genes coding for beta-methylcrotonyl-CoA carboxylase of tomato. J Biol Chem. 1994 Apr 22;269(16):11760–11768. [PubMed] [Google Scholar]
  29. Weaver L. M., Lebrun L., Franklin A., Huang L., Hoffman N., Wurtele E. S., Nikolau B. J. Molecular cloning of the biotinylated subunit of 3-methylcrotonyl-coenzyme A carboxylase of Arabidopsis thaliana. Plant Physiol. 1995 Mar;107(3):1013–1014. doi: 10.1104/pp.107.3.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Whitehead C. C., Bannister D. W. Aspects of metabolism related to the occurrence of skin lesions in biotin-deficient chicks. Br Poult Sci. 1981 Sep;22(5):467–472. doi: 10.1080/00071688108447911. [DOI] [PubMed] [Google Scholar]
  31. Wurtele E. S., Nikolau B. J. Plants contain multiple biotin enzymes: discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase and pyruvate carboxylase in the plant kingdom. Arch Biochem Biophys. 1990 Apr;278(1):179–186. doi: 10.1016/0003-9861(90)90246-u. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES