Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):1151–1160. doi: 10.1104/pp.108.3.1151

Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons.

P Bueno 1, J Varela 1, G Gimeénez-Gallego 1, L A del Río 1
PMCID: PMC157468  PMID: 7630940

Abstract

The biochemical and immunochemical characterization of a superoxide dismutase (SOD, EC 1.15.1.1) from peroxisomal origin has been carried out. The enzyme is a Cu,Zn-containing SOD (CuZn-SOD) located in the matrix of peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons (L.M. Sandalio and L.A. del Río [1988] Plant Physiol 88: 1215-1218). The amino acid composition of the enzyme was determined. Analysis by reversed-phase high-performance liquid chromatography of the peroxisomal CuZn-SOD incubated with 6 M guanidine-HCl indicated that this enzyme contained a noncovalently bound chromophore group that was responsible for the absorbance peak of the native enzyme at 260 nm. The amino acid sequence of the peroxisomal CuZn-SOD was determined by Edman degradation. Comparison of its sequence with those reported for other plant SODs revealed homologies of about 70% with cytosolic CuZn-SODs and of 90% with chloroplastic CuZn-SODs. The peroxisomal SOD has a high thermal stability and resistance to inactivation by hydrogen peroxide. A polyclonal antibody was raised against peroxisomal CuZn-SOD, and by western blotting the antibody cross-reacted with plant CuZn-SODs but did not recognize either plant Mn-SOD or bacterial Fe-SOD. The antiSOD-immunoglobulin G showed a weak cross-reaction with bovine erythrocytes and liver CuZn-SODs, and also with cell-free extracts from trout liver. The possible function of this CuZn-SOD in the oxidative metabolism of peroxisomes is discussed.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada K., Kanematsu S., Uchida K. Superoxide dismutases in photosynthetic organisms: absence of the cuprozinc enzyme in eukaryotic algae. Arch Biochem Biophys. 1977 Feb;179(1):243–256. doi: 10.1016/0003-9861(77)90109-6. [DOI] [PubMed] [Google Scholar]
  2. Bannister J. V., Bannister W. H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22(2):111–180. doi: 10.3109/10409238709083738. [DOI] [PubMed] [Google Scholar]
  3. Bannister W. H., Bannister J. V., Barra D., Bond J., Bossa F. Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radic Res Commun. 1991;12-13 Pt 1:349–361. doi: 10.3109/10715769109145804. [DOI] [PubMed] [Google Scholar]
  4. Bueno P., Del Río L. A. Purification and Properties of Glyoxysomal Cuprozinc Superoxide Dismutase from Watermelon Cotyledons (Citrullus vulgaris Schrad). Plant Physiol. 1992 Jan;98(1):331–336. doi: 10.1104/pp.98.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crapo J. D., Oury T., Rabouille C., Slot J. W., Chang L. Y. Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10405–10409. doi: 10.1073/pnas.89.21.10405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Del Río L. A., Fernández V. M., Rupérez F. L., Sandalio L. M., Palma J. M. NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes. Plant Physiol. 1989 Mar;89(3):728–731. doi: 10.1104/pp.89.3.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dhaunsi G. S., Gulati S., Singh A. K., Orak J. K., Asayama K., Singh I. Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes. Biochemical and immunochemical evidence. J Biol Chem. 1992 Apr 5;267(10):6870–6873. [PubMed] [Google Scholar]
  8. Gimenez-Gallego G., Rodkey J., Bennett C., Rios-Candelore M., DiSalvo J., Thomas K. Brain-derived acidic fibroblast growth factor: complete amino acid sequence and homologies. Science. 1985 Dec 20;230(4732):1385–1388. doi: 10.1126/science.4071057. [DOI] [PubMed] [Google Scholar]
  9. Karpinski S., Wingsle G., Olsson O., Hällgren J. E. Characterization of cDNAs encoding CuZn-superoxide dismutases in Scots pine. Plant Mol Biol. 1992 Feb;18(3):545–555. doi: 10.1007/BF00040670. [DOI] [PubMed] [Google Scholar]
  10. Keller G. A., Warner T. G., Steimer K. S., Hallewell R. A. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7381–7385. doi: 10.1073/pnas.88.16.7381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kitagawa Y., Tsunasawa S., Tanaka N., Katsube Y., Sakiyama F., Asada K. Amino acid sequence of copper,zinc-superoxide dismutase from spinach leaves. J Biochem. 1986 May;99(5):1289–1298. doi: 10.1093/oxfordjournals.jbchem.a135596. [DOI] [PubMed] [Google Scholar]
  12. Kono Y., Fridovich I. Superoxide radical inhibits catalase. J Biol Chem. 1982 May 25;257(10):5751–5754. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Mannaerts G. P., Van Veldhoven P. P. Metabolic pathways in mammalian peroxisomes. Biochimie. 1993;75(3-4):147–158. doi: 10.1016/0300-9084(93)90072-z. [DOI] [PubMed] [Google Scholar]
  15. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  16. Pajot P. Fluroescence of proteins in 6-M guanidine hydrochloride. A method for the quantitative determination of tryptophan. Eur J Biochem. 1976 Mar 16;63(1):263–269. doi: 10.1111/j.1432-1033.1976.tb10228.x. [DOI] [PubMed] [Google Scholar]
  17. Puget K., Michelson A. M. Isolation of a new copper-containing superoxide dismutase bacteriocuprein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):830–838. doi: 10.1016/s0006-291x(74)80492-4. [DOI] [PubMed] [Google Scholar]
  18. Sandalio L. M., Del Río L. A. Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes). Plant Physiol. 1988 Dec;88(4):1215–1218. doi: 10.1104/pp.88.4.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scioli J. R., Zilinskas B. A. Cloning and characterization of a cDNA encoding the chloroplastic copper/zinc-superoxide dismutase from pea. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7661–7665. doi: 10.1073/pnas.85.20.7661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steffens G. J., Bannister J. V., Bannister W. H., Flohé L., Günzler W. A., Kim S. M., Otting F. The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: evidence for a separate evolution of Cu-Zn superoxide dismutase in bacteria. Hoppe Seylers Z Physiol Chem. 1983 Jun;364(6):675–690. doi: 10.1515/bchm2.1983.364.1.675. [DOI] [PubMed] [Google Scholar]
  21. Steffens G. J., Michelson A. M., Otting F., Puget K., Strassburger W., Flohé L. Primary structure of Cu-Zn superoxide dismutase of Brassica oleracea proves homology with corresponding enzymes of animals, fungi and prokaryotes. Biol Chem Hoppe Seyler. 1986 Oct;367(10):1007–1016. doi: 10.1515/bchm3.1986.367.2.1007. [DOI] [PubMed] [Google Scholar]
  22. Steinman H. M. Bacteriocuprein superoxide dismutase of Photobacterium leiognathi. Isolation and sequence of the gene and evidence for a precursor form. J Biol Chem. 1987 Feb 5;262(4):1882–1887. [PubMed] [Google Scholar]
  23. Tolbert N. E. Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem. 1981;50:133–157. doi: 10.1146/annurev.bi.50.070181.001025. [DOI] [PubMed] [Google Scholar]
  24. Wynants J., Van Belle H. Single-run high-performance liquid chromatography of nucleotides, nucleosides, and major purine bases and its application to different tissue extracts. Anal Biochem. 1985 Jan;144(1):258–266. doi: 10.1016/0003-2697(85)90114-9. [DOI] [PubMed] [Google Scholar]
  25. del Río L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med. 1992 Nov;13(5):557–580. doi: 10.1016/0891-5849(92)90150-f. [DOI] [PubMed] [Google Scholar]
  26. van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES