Abstract
The biochemical and immunochemical characterization of a superoxide dismutase (SOD, EC 1.15.1.1) from peroxisomal origin has been carried out. The enzyme is a Cu,Zn-containing SOD (CuZn-SOD) located in the matrix of peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons (L.M. Sandalio and L.A. del Río [1988] Plant Physiol 88: 1215-1218). The amino acid composition of the enzyme was determined. Analysis by reversed-phase high-performance liquid chromatography of the peroxisomal CuZn-SOD incubated with 6 M guanidine-HCl indicated that this enzyme contained a noncovalently bound chromophore group that was responsible for the absorbance peak of the native enzyme at 260 nm. The amino acid sequence of the peroxisomal CuZn-SOD was determined by Edman degradation. Comparison of its sequence with those reported for other plant SODs revealed homologies of about 70% with cytosolic CuZn-SODs and of 90% with chloroplastic CuZn-SODs. The peroxisomal SOD has a high thermal stability and resistance to inactivation by hydrogen peroxide. A polyclonal antibody was raised against peroxisomal CuZn-SOD, and by western blotting the antibody cross-reacted with plant CuZn-SODs but did not recognize either plant Mn-SOD or bacterial Fe-SOD. The antiSOD-immunoglobulin G showed a weak cross-reaction with bovine erythrocytes and liver CuZn-SODs, and also with cell-free extracts from trout liver. The possible function of this CuZn-SOD in the oxidative metabolism of peroxisomes is discussed.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asada K., Kanematsu S., Uchida K. Superoxide dismutases in photosynthetic organisms: absence of the cuprozinc enzyme in eukaryotic algae. Arch Biochem Biophys. 1977 Feb;179(1):243–256. doi: 10.1016/0003-9861(77)90109-6. [DOI] [PubMed] [Google Scholar]
- Bannister J. V., Bannister W. H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22(2):111–180. doi: 10.3109/10409238709083738. [DOI] [PubMed] [Google Scholar]
- Bannister W. H., Bannister J. V., Barra D., Bond J., Bossa F. Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radic Res Commun. 1991;12-13 Pt 1:349–361. doi: 10.3109/10715769109145804. [DOI] [PubMed] [Google Scholar]
- Bueno P., Del Río L. A. Purification and Properties of Glyoxysomal Cuprozinc Superoxide Dismutase from Watermelon Cotyledons (Citrullus vulgaris Schrad). Plant Physiol. 1992 Jan;98(1):331–336. doi: 10.1104/pp.98.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crapo J. D., Oury T., Rabouille C., Slot J. W., Chang L. Y. Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10405–10409. doi: 10.1073/pnas.89.21.10405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Río L. A., Fernández V. M., Rupérez F. L., Sandalio L. M., Palma J. M. NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes. Plant Physiol. 1989 Mar;89(3):728–731. doi: 10.1104/pp.89.3.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhaunsi G. S., Gulati S., Singh A. K., Orak J. K., Asayama K., Singh I. Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes. Biochemical and immunochemical evidence. J Biol Chem. 1992 Apr 5;267(10):6870–6873. [PubMed] [Google Scholar]
- Gimenez-Gallego G., Rodkey J., Bennett C., Rios-Candelore M., DiSalvo J., Thomas K. Brain-derived acidic fibroblast growth factor: complete amino acid sequence and homologies. Science. 1985 Dec 20;230(4732):1385–1388. doi: 10.1126/science.4071057. [DOI] [PubMed] [Google Scholar]
- Karpinski S., Wingsle G., Olsson O., Hällgren J. E. Characterization of cDNAs encoding CuZn-superoxide dismutases in Scots pine. Plant Mol Biol. 1992 Feb;18(3):545–555. doi: 10.1007/BF00040670. [DOI] [PubMed] [Google Scholar]
- Keller G. A., Warner T. G., Steimer K. S., Hallewell R. A. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7381–7385. doi: 10.1073/pnas.88.16.7381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitagawa Y., Tsunasawa S., Tanaka N., Katsube Y., Sakiyama F., Asada K. Amino acid sequence of copper,zinc-superoxide dismutase from spinach leaves. J Biochem. 1986 May;99(5):1289–1298. doi: 10.1093/oxfordjournals.jbchem.a135596. [DOI] [PubMed] [Google Scholar]
- Kono Y., Fridovich I. Superoxide radical inhibits catalase. J Biol Chem. 1982 May 25;257(10):5751–5754. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mannaerts G. P., Van Veldhoven P. P. Metabolic pathways in mammalian peroxisomes. Biochimie. 1993;75(3-4):147–158. doi: 10.1016/0300-9084(93)90072-z. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Pajot P. Fluroescence of proteins in 6-M guanidine hydrochloride. A method for the quantitative determination of tryptophan. Eur J Biochem. 1976 Mar 16;63(1):263–269. doi: 10.1111/j.1432-1033.1976.tb10228.x. [DOI] [PubMed] [Google Scholar]
- Puget K., Michelson A. M. Isolation of a new copper-containing superoxide dismutase bacteriocuprein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):830–838. doi: 10.1016/s0006-291x(74)80492-4. [DOI] [PubMed] [Google Scholar]
- Sandalio L. M., Del Río L. A. Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes). Plant Physiol. 1988 Dec;88(4):1215–1218. doi: 10.1104/pp.88.4.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scioli J. R., Zilinskas B. A. Cloning and characterization of a cDNA encoding the chloroplastic copper/zinc-superoxide dismutase from pea. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7661–7665. doi: 10.1073/pnas.85.20.7661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steffens G. J., Bannister J. V., Bannister W. H., Flohé L., Günzler W. A., Kim S. M., Otting F. The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: evidence for a separate evolution of Cu-Zn superoxide dismutase in bacteria. Hoppe Seylers Z Physiol Chem. 1983 Jun;364(6):675–690. doi: 10.1515/bchm2.1983.364.1.675. [DOI] [PubMed] [Google Scholar]
- Steffens G. J., Michelson A. M., Otting F., Puget K., Strassburger W., Flohé L. Primary structure of Cu-Zn superoxide dismutase of Brassica oleracea proves homology with corresponding enzymes of animals, fungi and prokaryotes. Biol Chem Hoppe Seyler. 1986 Oct;367(10):1007–1016. doi: 10.1515/bchm3.1986.367.2.1007. [DOI] [PubMed] [Google Scholar]
- Steinman H. M. Bacteriocuprein superoxide dismutase of Photobacterium leiognathi. Isolation and sequence of the gene and evidence for a precursor form. J Biol Chem. 1987 Feb 5;262(4):1882–1887. [PubMed] [Google Scholar]
- Tolbert N. E. Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem. 1981;50:133–157. doi: 10.1146/annurev.bi.50.070181.001025. [DOI] [PubMed] [Google Scholar]
- Wynants J., Van Belle H. Single-run high-performance liquid chromatography of nucleotides, nucleosides, and major purine bases and its application to different tissue extracts. Anal Biochem. 1985 Jan;144(1):258–266. doi: 10.1016/0003-2697(85)90114-9. [DOI] [PubMed] [Google Scholar]
- del Río L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med. 1992 Nov;13(5):557–580. doi: 10.1016/0891-5849(92)90150-f. [DOI] [PubMed] [Google Scholar]
- van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]