Abstract
During the induction of Crassulacean acid and metabolism by environmental stresses in the common ice plant (Mesembryanthemum crystallinum L.), enzyme activities involved in glycolysis and gluconeogenesis, including enolase (2-phospho-D-glycerate hydrolase), increase significantly. In this study, we describe two nearly identical cDNA clones (Pgh1a and Pgh1b) encoding enolase from the common ice plant. This cytoplasmically localized enzyme is encoded by a gene family of at least two members. The polypeptides encoded by these cDNAs share a high degree of amino acid sequence identity (86.7-88.3%) with other higher plant enolases. Enolase activity increased more than 4-fold in leaves during salt stress. This increase was accompanied by a dramatic increase in Pgh1 transcription rate and the accumulation of enolase transcripts in leaves. Pgh1 transcript levels also increased in leaves in response to low temperature, drought, and anaerobic stress conditions and upon treatment of unstressed plants with the plant growth regulators abscisic acid and 6-benzylaminopurine. In roots, enolase transcripts increased in abundance in response to salt, low and high temperature, and anaerobic stresses. Surprisingly, we observed no increase in enolase protein levels, despite the increased levels of mRNA and enzyme activity during salt stress. The stress-induced increase in enolase activity is therefore due to posttranslational regulation of steady-state enzyme pools. Our results demonstrate that the stress-induced shift to Crassulacean acid metabolism in the ice plant involves complex regulatory control mechanisms that operate at the transcriptional, posttranscriptional, and postranslational levels.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Baur B., Dietz K. J., Winter K. Regulatory protein phosphorylation of phosphoenolpyruvate carboxylase in the facultative crassulacean-acid-metabolism plant Mesembryanthemum crystallinum L. Eur J Biochem. 1992 Oct 1;209(1):95–101. doi: 10.1111/j.1432-1033.1992.tb17265.x. [DOI] [PubMed] [Google Scholar]
- Blakeley S. D., Dekroon C., Cole K. P., Kraml M., Dennis D. T. Isolation of a full-length cDNA encoding cytosolic enolase from Ricinus communis. Plant Physiol. 1994 May;105(1):455–456. doi: 10.1104/pp.105.1.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bostock R. M., Quatrano R. S. Regulation of Em Gene Expression in Rice : Interaction between Osmotic Stress and Abscisic Acid. Plant Physiol. 1992 Apr;98(4):1356–1363. doi: 10.1104/pp.98.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brewer J. M., Robson R. L., Glover C. V., Holland M. J., Lebioda L. Preparation and characterization of the E168Q site-directed mutant of yeast enolase 1. Proteins. 1993 Dec;17(4):426–434. doi: 10.1002/prot.340170409. [DOI] [PubMed] [Google Scholar]
- Chu C., Dai Z., Ku M. S., Edwards G. E. Induction of Crassulacean Acid Metabolism in the Facultative Halophyte Mesembryanthemum crystallinum by Abscisic Acid. Plant Physiol. 1990 Jul;93(3):1253–1260. doi: 10.1104/pp.93.3.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crosby J. S., Vayda M. E. Stress-Induced Translational Control in Potato Tubers May Be Mediated by Polysome-Associated Proteins. Plant Cell. 1991 Sep;3(9):1013–1023. doi: 10.1105/tpc.3.9.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushman J. C., Meyer G., Michalowski C. B., Schmitt J. M., Bohnert H. J. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell. 1989 Jul;1(7):715–725. doi: 10.1105/tpc.1.7.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushman J. C., Michalowski C. B., Bohnert H. J. Developmental control of crassulacean Acid metabolism inducibility by salt stress in the common ice plant. Plant Physiol. 1990 Nov;94(3):1137–1142. doi: 10.1104/pp.94.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dale R. M., McClure B. A., Houchins J. P. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18 S rDNA. Plasmid. 1985 Jan;13(1):31–40. doi: 10.1016/0147-619x(85)90053-8. [DOI] [PubMed] [Google Scholar]
- Dannelly H. K., Duclos B., Cozzone A. J., Reeves H. C. Phosphorylation of Escherichia coli enolase. Biochimie. 1989 Sep-Oct;71(9-10):1095–1100. doi: 10.1016/0300-9084(89)90116-8. [DOI] [PubMed] [Google Scholar]
- DeRocher E. J., Bohnert H. J. Development and Environmental Stress Employ Different Mechanisms in the Expression of a Plant Gene Family. Plant Cell. 1993 Nov;5(11):1611–1625. doi: 10.1105/tpc.5.11.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckenrode V. K., Arnold J., Meagher R. B. Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J Mol Evol. 1984;21(3):259–269. doi: 10.1007/BF02102358. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Gottlieb L. D. Conservation and duplication of isozymes in plants. Science. 1982 Apr 23;216(4544):373–380. doi: 10.1126/science.216.4544.373. [DOI] [PubMed] [Google Scholar]
- Guerrero F. D., Jones J. T., Mullet J. E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol. 1990 Jul;15(1):11–26. doi: 10.1007/BF00017720. [DOI] [PubMed] [Google Scholar]
- Hake S., Kelley P. M., Taylor W. C., Freeling M. Coordinate induction of alcohol dehydrogenase 1, aldolase, and other anaerobic RNAs in maize. J Biol Chem. 1985 Apr 25;260(8):5050–5054. [PubMed] [Google Scholar]
- Hanscom Z., Ting I. P. Responses of succulents to plant water stress. Plant Physiol. 1978 Mar;61(3):327–330. doi: 10.1104/pp.61.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
- Kelley P. M., Freeling M. Anaerobic expression of maize fructose-1,6-diphosphate aldolase. J Biol Chem. 1984 Nov 25;259(22):14180–14183. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lal S. K., Johnson S., Conway T., Kelley P. M. Characterization of a maize cDNA that complements an enolase-deficient mutant of Escherichia coli. Plant Mol Biol. 1991 May;16(5):787–795. doi: 10.1007/BF00015071. [DOI] [PubMed] [Google Scholar]
- Lebioda L., Stec B., Brewer J. M. The structure of yeast enolase at 2.25-A resolution. An 8-fold beta + alpha-barrel with a novel beta beta alpha alpha (beta alpha)6 topology. J Biol Chem. 1989 Mar 5;264(7):3685–3693. doi: 10.2210/pdb2enl/pdb. [DOI] [PubMed] [Google Scholar]
- Lebioda L., Stec B. Mechanism of enolase: the crystal structure of enolase-Mg2(+)-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-A resolution. Biochemistry. 1991 Mar 19;30(11):2817–2822. doi: 10.1021/bi00225a012. [DOI] [PubMed] [Google Scholar]
- Lu J. L., Ertl J. R., Chen C. M. Cytokinin enhancement of the light induction of nitrate reductase transcript levels in etiolated barley leaves. Plant Mol Biol. 1990 Apr;14(4):585–594. doi: 10.1007/BF00027504. [DOI] [PubMed] [Google Scholar]
- Lu J. L., Ertl J. R., Chen C. M. Transcriptional regulation of nitrate reductase mRNA levels by cytokinin-abscisic Acid interactions in etiolated barley leaves. Plant Physiol. 1992 Apr;98(4):1255–1260. doi: 10.1104/pp.98.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McElfresh K. C., Chourey P. S. Anaerobiosis induces transcription but not translation of sucrose synthase in maize. Plant Physiol. 1988 Jun;87(2):542–546. doi: 10.1104/pp.87.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McElwain E. F., Bohnert H. J., Thomas J. C. Light Moderates the Induction of Phosphoenolpyruvate Carboxylase by NaCl and Abscisic Acid in Mesembryanthemum crystallinum. Plant Physiol. 1992 Jul;99(3):1261–1264. doi: 10.1104/pp.99.3.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalowski C. B., Olson S. W., Piepenbrock M., Schmitt J. M., Bohnert H. J. Time Course of mRNA Induction Elicited by Salt Stress in the Common Ice Plant (Mesembryanthemum crystallinum). Plant Physiol. 1989 Mar;89(3):811–816. doi: 10.1104/pp.89.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miernyk J. A., Dennis D. T. Enolase isozymes from Ricinus communis: partial purification and characterization of the isozymes. Arch Biochem Biophys. 1984 Sep;233(2):643–651. doi: 10.1016/0003-9861(84)90490-9. [DOI] [PubMed] [Google Scholar]
- Miernyk J. A., Dennis D. T. Isozymes of the glycolytic enzymes in endosperm from developing castor oil seeds. Plant Physiol. 1982 Apr;69(4):825–828. doi: 10.1104/pp.69.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nettelblad F. A., Engström L. The kinetic effects of in vitro phosphorylation of rabbit muscle enolase by protein kinase C. A possible new kind of enzyme regulation. FEBS Lett. 1987 Apr 20;214(2):249–252. doi: 10.1016/0014-5793(87)80064-9. [DOI] [PubMed] [Google Scholar]
- Ostrem J. A., Olson S. W., Schmitt J. M., Bohnert H. J. Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum. Plant Physiol. 1987 Aug;84(4):1270–1275. doi: 10.1104/pp.84.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peschke V. M., Sachs M. M. Multiple pyruvate decarboxylase genes in maize are induced by hypoxia. Mol Gen Genet. 1993 Aug;240(2):206–212. doi: 10.1007/BF00277058. [DOI] [PubMed] [Google Scholar]
- Reiss N., Kanety H., Schlessinger J. Five enzymes of the glycolytic pathway serve as substrates for purified epidermal-growth-factor-receptor kinase. Biochem J. 1986 Nov 1;239(3):691–697. doi: 10.1042/bj2390691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih M. C., Lazar G., Goodman H. M. Evidence in favor of the symbiotic origin of chloroplasts: primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases. Cell. 1986 Oct 10;47(1):73–80. doi: 10.1016/0092-8674(86)90367-3. [DOI] [PubMed] [Google Scholar]
- Solomos T., Laties G. G. Similarities between the Actions of Ethylene and Cyanide in Initiating the Climacteric and Ripening of Avocados. Plant Physiol. 1974 Oct;54(4):506–511. doi: 10.1104/pp.54.4.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D. F., Zheng P., Beidler D. R., Zerillo C. Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine. Mol Cell Biol. 1991 Feb;11(2):987–1001. doi: 10.1128/mcb.11.2.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki I., Cretin C., Omata T., Sugiyama T. Transcriptional and Posttranscriptional Regulation of Nitrogen-Responding Expression of Phosphoenolpyruvate Carboxylase Gene in Maize. Plant Physiol. 1994 Aug;105(4):1223–1229. doi: 10.1104/pp.105.4.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taliercio E. W., Chourey P. S. Post-transcriptional control of sucrose synthase expression in anaerobic seedlings of maize. Plant Physiol. 1989 Aug;90(4):1359–1364. doi: 10.1104/pp.90.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J. C., Bohnert H. J. Salt Stress Perception and Plant Growth Regulators in the Halophyte Mesembryanthemum crystallinum. Plant Physiol. 1993 Dec;103(4):1299–1304. doi: 10.1104/pp.103.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J. C., McElwain E. F., Bohnert H. J. Convergent Induction of Osmotic Stress-Responses : Abscisic Acid, Cytokinin, and the Effects of NaCl. Plant Physiol. 1992 Sep;100(1):416–423. doi: 10.1104/pp.100.1.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J. C., Smigocki A. C., Bohnert H. J. Light-induced expression of ipt from Agrobacterium tumefaciens results in cytokinin accumulation and osmotic stress symptoms in transgenic tobacco. Plant Mol Biol. 1995 Jan;27(2):225–235. doi: 10.1007/BF00020179. [DOI] [PubMed] [Google Scholar]
- Van der Straeten D., Rodrigues-Pousada R. A., Goodman H. M., Van Montagu M. Plant enolase: gene structure, expression, and evolution. Plant Cell. 1991 Jul;3(7):719–735. doi: 10.1105/tpc.3.7.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
- Wahle E., Keller W. The biochemistry of 3'-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem. 1992;61:419–440. doi: 10.1146/annurev.bi.61.070192.002223. [DOI] [PubMed] [Google Scholar]
- Webster C., Gaut R. L., Browning K. S., Ravel J. M., Roberts J. K. Hypoxia enhances phosphorylation of eukaryotic initiation factor 4A in maize root tips. J Biol Chem. 1991 Dec 5;266(34):23341–23346. [PubMed] [Google Scholar]
- Winter K., Foster J. G., Edwards G. E., Holtum J. A. Intracellular Localization of Enzymes of Carbon Metabolism in Mesembryanthemum crystallinum Exhibiting C(3) Photosynthetic Characteristics or Performing Crassulacean Acid Metabolism. Plant Physiol. 1982 Feb;69(2):300–307. doi: 10.1104/pp.69.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang F., Lin J. J., Fox T. C., Mujer C. V., Rumpho M. E., Kennedy R. A. Effect of Aerobic Priming on the Response of Echinochloa crus-pavonis to Anaerobic Stress (Protein Synthesis and Phosphorylation). Plant Physiol. 1994 Aug;105(4):1149–1157. doi: 10.1104/pp.105.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]