Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):1203–1210. doi: 10.1104/pp.108.3.1203

The Wheat Abscisic Acid-Responsive Protein Kinase mRNA, PKABA1, Is Up-Regulated by Dehydration, Cold Temperature, and Osmotic Stress.

L D Holappa 1, M K Walker-Simmons 1
PMCID: PMC157474  PMID: 12228537

Abstract

The effects of dehydration, cold-temperature treatment, and osmotic and salt stress on the expression of an abscisic acid-responsive protein kinase mRNA (PKABA1) were determined in wheat (Triticum aestivum L.) seedlings. The PKABA1 transcript was detectable at basal levels in tissues of nonstressed plants and accumulated to higher levels in shoot, scutellar, and root tissues of stressed plants. PKABA1 transcript accumulated rapidly within 2 h following dehydration and within 24 h following other treatments (cold, osmotic stress, and high salt). The accumulation of PKABA1 mRNA could not be separated temporally from that of a wheat group 3 late embryogenesis abundant mRNA during dehydration and cold treatment. High PKABA1 mRNA levels were observed in field-grown plants growing under cold winter conditions but not under warmer summer conditions. A recent GenBank data base search indicated that other plant protein kinases with similar acidic amino acid stretches as in PKABA1 have been identified, and some of these kinases are responsive to environmental signals. These results suggest that PKABA1 may be part of general environmental stress responses in wheat.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowler C., Chua N. H. Emerging themes of plant signal transduction. Plant Cell. 1994 Nov;6(11):1529–1541. doi: 10.1105/tpc.6.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carling D., Aguan K., Woods A., Verhoeven A. J., Beri R. K., Brennan C. H., Sidebottom C., Davison M. D., Scott J. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem. 1994 Apr 15;269(15):11442–11448. [PubMed] [Google Scholar]
  3. Celenza J. L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986 Sep 12;233(4769):1175–1180. doi: 10.1126/science.3526554. [DOI] [PubMed] [Google Scholar]
  4. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  5. Chapman K. S., Trewavas A., van Loon L. C. Regulation of the Phosphorylation of Chromatin-associated Proteins in Lemna and Hordeum. Plant Physiol. 1975 Feb;55(2):293–296. doi: 10.1104/pp.55.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curry J., Morris C. F., Walker-Simmons M. K. Sequence analysis of a cDNA encoding a group 3 LEA mRNA inducible by ABA or dehydration stress in wheat. Plant Mol Biol. 1991 Jun;16(6):1073–1076. doi: 10.1007/BF00016078. [DOI] [PubMed] [Google Scholar]
  7. Feiler H. S., Jacobs T. W. Cell division in higher plants: a cdc2 gene, its 34-kDa product, and histone H1 kinase activity in pea. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5397–5401. doi: 10.1073/pnas.87.14.5397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Halford N. G., Vicente-Carbajosa J., Sabelli P. A., Shewry P. R., Hannappel U., Kreis M. Molecular analyses of a barley multigene family homologous to the yeast protein kinase gene SNF1. Plant J. 1992 Sep;2(5):791–797. [PubMed] [Google Scholar]
  9. Hardie D. G., Carling D., Halford N. Roles of the Snf1/Rkin1/AMP-activated protein kinase family in the response to environmental and nutritional stress. Semin Cell Biol. 1994 Dec;5(6):409–416. doi: 10.1006/scel.1994.1048. [DOI] [PubMed] [Google Scholar]
  10. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  11. Leung J., Bouvier-Durand M., Morris P. C., Guerrier D., Chefdor F., Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science. 1994 Jun 3;264(5164):1448–1452. doi: 10.1126/science.7910981. [DOI] [PubMed] [Google Scholar]
  12. Meyer K., Leube M. P., Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science. 1994 Jun 3;264(5164):1452–1455. doi: 10.1126/science.8197457. [DOI] [PubMed] [Google Scholar]
  13. Monroy A. F., Sarhan F., Dhindsa R. S. Cold-Induced Changes in Freezing Tolerance, Protein Phosphorylation, and Gene Expression (Evidence for a Role of Calcium). Plant Physiol. 1993 Aug;102(4):1227–1235. doi: 10.1104/pp.102.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muranaka T., Banno H., Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol. 1994 May;14(5):2958–2965. doi: 10.1128/mcb.14.5.2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Park Y. S., Hong S. W., Oh S. A., Kwak J. M., Lee H. H., Nam H. G. Two putative protein kinases from Arabidopsis thaliana contain highly acidic domains. Plant Mol Biol. 1993 Jul;22(4):615–624. doi: 10.1007/BF00047402. [DOI] [PubMed] [Google Scholar]
  16. Raz V., Fluhr R. Ethylene Signal Is Transduced via Protein Phosphorylation Events in Plants. Plant Cell. 1993 May;5(5):523–530. doi: 10.1105/tpc.5.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ried J. L., Walker-Simmons M. K. Group 3 Late Embryogenesis Abundant Proteins in Desiccation-Tolerant Seedlings of Wheat (Triticum aestivum L.). Plant Physiol. 1993 May;102(1):125–131. doi: 10.1104/pp.102.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sano H., Youssefian S. Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2582–2586. doi: 10.1073/pnas.91.7.2582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Singh N. K., Larosa P. C., Handa A. K., Hasegawa P. M., Bressan R. A. Hormonal regulation of protein synthesis associated with salt tolerance in plant cells. Proc Natl Acad Sci U S A. 1987 Feb;84(3):739–743. doi: 10.1073/pnas.84.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Urao T., Katagiri T., Mizoguchi T., Yamaguchi-Shinozaki K., Hayashida N., Shinozaki K. Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet. 1994 Aug 15;244(4):331–340. doi: 10.1007/BF00286684. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES