Abstract
Peribacteroid membrane vesicles from pea (Pisum sativum) root nodules were isolated from membrane-enclosed bacteroids by an osmotic shock. The ATPase activity associated with this membrane preparation was characterized, and its electrogenic properties were determined. The pH gradient was measured as a change of the fluorescence intensity of 9-amino-6-chloro-2-methoxyacridine and the membrane potential as a shift of absorbance of bis-(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol. It was demonstrated that the ATPase generates a pH gradient as well as a membrane potential across the peribacteroid membrane. The reversibility of the ATPase was demonstrated by a light-dependent ATP synthesis by peribacteroid membrane vesicles fused with bacteriorhodopsin-phospholipid vesicles. The light-driven ATP synthesis by the peribacteroid membrane ATPase was completely inhibited by a proton-conducting ionophore. The proton-pumping activity of the peribacteroid membrane ATPase could also be demonstrated with peribacteroid membrane-enclosed bacteroids, and effects on nitrogenase activity were established. At pH values below 7.5, an active peribacteroid membrane ATPase inhibited the nitrogenase activity of peribacteroid membrane-enclosed bacteroids. At pH values above 8, at which whole cell nitrogenase activity was inhibited, the protonpumping activity of the peribacteroid membrane ATPase could partially reverse the pH inhibition. Vanadate, an inhibitor of plasma membrane and peribacteroid membrane ATPases, stimulated nodular nitrogenase activity. It will be proposed that the proton-pumping activity of the peribacteroid membrane ATPase in situ is a possible regulator of nodular nitrogenase activity.
Full Text
The Full Text of this article is available as a PDF (696.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appels M. A., Haaker H. Identification of cytoplasmic nodule-associated forms of malate dehydrogenase involved in the symbiosis between Rhizobium leguminosarum and Pisum sativum. Eur J Biochem. 1988 Feb 1;171(3):515–522. doi: 10.1111/j.1432-1033.1988.tb13820.x. [DOI] [PubMed] [Google Scholar]
- Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
- Blumwald E., Fortin M. G., Rea P. A., Verma D. P., Poole R. J. Presence of Host-Plasma Membrane Type H-ATPase in the Membrane Envelope Enclosing the Bacteroids in Soybean Root Nodules. Plant Physiol. 1985 Aug;78(4):665–672. doi: 10.1104/pp.78.4.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumwald E., Poole R. J. Nitrate storage and retrieval in Beta vulgaris: Effects of nitrate and chloride on proton gradients in tonoplast vesicles. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3683–3687. doi: 10.1073/pnas.82.11.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cordewener J., Krüse-Wolters M., Wassink H., Haaker H., Veeger C. The role of MgATP hydrolysis in nitrogenase catalysis. Eur J Biochem. 1988 Mar 15;172(3):739–745. doi: 10.1111/j.1432-1033.1988.tb13951.x. [DOI] [PubMed] [Google Scholar]
- Domigan N. M., Farnden K. J., Robertson J. G., Monk B. C. Characterization of the peribacteroid membrane ATPase of lupin root nodules. Arch Biochem Biophys. 1988 Aug 1;264(2):564–573. doi: 10.1016/0003-9861(88)90322-0. [DOI] [PubMed] [Google Scholar]
- Freedman J. C., Novak T. S. Optical measurement of membrane potential in cells, organelles, and vesicles. Methods Enzymol. 1989;172:102–122. doi: 10.1016/s0076-6879(89)72011-5. [DOI] [PubMed] [Google Scholar]
- Haaker H., Wassink H. Electron allocation to H+ and N2 by nitrogenase in Rhizobium leguminosarum bacteroids. Eur J Biochem. 1984 Jul 2;142(1):37–42. doi: 10.1111/j.1432-1033.1984.tb08247.x. [DOI] [PubMed] [Google Scholar]
- Kasahara M., Hinkle P. C. Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc Natl Acad Sci U S A. 1976 Feb;73(2):396–400. doi: 10.1073/pnas.73.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racker E. Reconstitution of membrane processes. Methods Enzymol. 1979;55:699–711. doi: 10.1016/0076-6879(79)55078-2. [DOI] [PubMed] [Google Scholar]
- Robertson J. G., Warburton M. P., Lyttleton P., Fordyce A. M., Bullivant S. Membranes in lupin root nodules. II. Preparation and properties of peribacteroid membranes and bacteroid envelope inner membranes from developing lupin nodules. J Cell Sci. 1978 Apr;30:151–174. doi: 10.1242/jcs.30.1.151. [DOI] [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Smith J. C., Russ P., Cooperman B. S., Chance B. Synthesis, structure determination, spectral properties, and energy-linked spectral responses of the extrinsic probe oxonol V in membranes. Biochemistry. 1976 Nov 16;15(23):5094–5105. doi: 10.1021/bi00668a023. [DOI] [PubMed] [Google Scholar]
- Udvardi M. K., Day D. A. Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean (Glycine max L.) Root Nodules. Plant Physiol. 1989 Jul;90(3):982–987. doi: 10.1104/pp.90.3.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vara F., Serrano R. Partial purification and properties of the proton-translocating ATPase of plant plasma membranes. J Biol Chem. 1982 Nov 10;257(21):12826–12830. [PubMed] [Google Scholar]
- Verma D. P., Kazazian V., Zogbi V., Bal A. K. Isolation and characterization of the membrane envelope enclosing the bacteroids in soybean root nodules. J Cell Biol. 1978 Sep;78(3):919–936. doi: 10.1083/jcb.78.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittenberg J. B. Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules. J Biol Chem. 1974 Jul 10;249(13):4057–4066. [PubMed] [Google Scholar]