Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jul;108(3):1259–1267. doi: 10.1104/pp.108.3.1259

Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase.

J O Langland 1, S Jin 1, B L Jacobs 1, D A Roth 1
PMCID: PMC157481  PMID: 7630944

Abstract

Plant virus or viroid infection stimulates the phosphorylation of a plant-encoded protein of M(r) 68,000 to 70,000 (now termed pPKR) that is associated with double-stranded RNA-stimulated protein kinase activity. Using various biochemical and immunological comparisons, we have demonstrated that this plant protein is an analog of the mammalian PKR enzymes. pPKR is both cytosolic and ribosome associated, similar to mammalian PKR, and appears to be capable of phosphorylating exogenous histones. Monoclonal anti-serum to the human PKR as well as antiserum to a conserved double-stranded RNA-binding domain present on mammalian PKR demonstrated cross-reactivity with pPKR. Likewise, polyclonal antiserum to the pPKR detected the mouse and human PKR in western blot analysis. Northern blot analysis of a mammalian PKR cDNA detected a specific 2.5-kb transcript present in plant poly (A)+ RNA.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. F. How does protein phosphorylation regulate photosynthesis? Trends Biochem Sci. 1992 Jan;17(1):12–17. doi: 10.1016/0968-0004(92)90418-9. [DOI] [PubMed] [Google Scholar]
  2. Baier L. J., Shors T., Shors S. T., Jacobs B. L. The mouse antiphosphotyrosine immunoreactive kinase, TIK, is indistinguishable from the double-stranded RNA-dependent, interferon-induced protein kinase, PKR. Nucleic Acids Res. 1993 Oct 11;21(20):4830–4835. doi: 10.1093/nar/21.20.4830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry M. J., Knutson G. S., Lasky S. R., Munemitsu S. M., Samuel C. E. Mechanism of interferon action. Purification and substrate specificities of the double-stranded RNA-dependent protein kinase from untreated and interferon-treated mouse fibroblasts. J Biol Chem. 1985 Sep 15;260(20):11240–11247. [PubMed] [Google Scholar]
  4. Galabru J., Hovanessian A. G. Two interferon-induced proteins are involved in the protein kinase complex dependent on double-stranded RNA. Cell. 1985 Dec;43(3 Pt 2):685–694. doi: 10.1016/0092-8674(85)90241-7. [DOI] [PubMed] [Google Scholar]
  5. Harter K., Frohnmeyer H., Kircher S., Kunkel T., Mühlbauer S., Schäfer E. Light induces rapid changes of the phosphorylation pattern in the cytosol of evacuolated parsley protoplasts. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5038–5042. doi: 10.1073/pnas.91.11.5038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hiddinga H. J., Crum C. J., Hu J., Roth D. A. Viroid-induced phosphorylation of a host protein related to a dsRNA-dependent protein kinase. Science. 1988 Jul 22;241(4864):451–453. doi: 10.1126/science.3393910. [DOI] [PubMed] [Google Scholar]
  7. Hu J., Roth D. Temporal regulation of tobacco mosaic virus-induced phosphorylation of a host encoded protein. Biochem Biophys Res Commun. 1991 Aug 30;179(1):229–235. doi: 10.1016/0006-291x(91)91359-k. [DOI] [PubMed] [Google Scholar]
  8. Jacobs B. L., Imani F. Histone proteins inhibit activation of the interferon-induced protein kinase by binding to double-stranded RNA. J Interferon Res. 1988 Dec;8(6):821–830. doi: 10.1089/jir.1988.8.821. [DOI] [PubMed] [Google Scholar]
  9. Jiménez-García L. F., Green S. R., Mathews M. B., Spector D. L. Organization of the double-stranded RNA-activated protein kinase DAI and virus-associated VA RNAI in adenovirus-2-infected HeLa cells. J Cell Sci. 1993 Sep;106(Pt 1):11–22. doi: 10.1242/jcs.106.1.11. [DOI] [PubMed] [Google Scholar]
  10. Kitajewski J., Schneider R. J., Safer B., Munemitsu S. M., Samuel C. E., Thimmappaya B., Shenk T. Adenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell. 1986 Apr 25;45(2):195–200. doi: 10.1016/0092-8674(86)90383-1. [DOI] [PubMed] [Google Scholar]
  11. Klimczak L. J., Schindler U., Cashmore A. R. DNA binding activity of the Arabidopsis G-box binding factor GBF1 is stimulated by phosphorylation by casein kinase II from broccoli. Plant Cell. 1992 Jan;4(1):87–98. doi: 10.1105/tpc.4.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koromilas A. E., Roy S., Barber G. N., Katze M. G., Sonenberg N. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science. 1992 Sep 18;257(5077):1685–1689. doi: 10.1126/science.1382315. [DOI] [PubMed] [Google Scholar]
  13. Kumar A., Haque J., Lacoste J., Hiscott J., Williams B. R. Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6288–6292. doi: 10.1073/pnas.91.14.6288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Langland J. O., Jacobs B. L. Cytosolic double-stranded RNA-dependent protein kinase is likely a dimer of partially phosphorylated Mr = 66,000 subunits. J Biol Chem. 1992 May 25;267(15):10729–10736. [PubMed] [Google Scholar]
  15. Langland J. O., Pettiford S. M., Jacobs B. L. Nucleic acid affinity chromatography: preparation and characterization of double-stranded RNA agarose. Protein Expr Purif. 1995 Feb;6(1):25–32. doi: 10.1006/prep.1995.1004. [DOI] [PubMed] [Google Scholar]
  16. Langland J. O., Pettiford S., Jiang B., Jacobs B. L. Products of the porcine group C rotavirus NSP3 gene bind specifically to double-stranded RNA and inhibit activation of the interferon-induced protein kinase PKR. J Virol. 1994 Jun;68(6):3821–3829. doi: 10.1128/jvi.68.6.3821-3829.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  18. Meurs E., Chong K., Galabru J., Thomas N. S., Kerr I. M., Williams B. R., Hovanessian A. G. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell. 1990 Jul 27;62(2):379–390. doi: 10.1016/0092-8674(90)90374-n. [DOI] [PubMed] [Google Scholar]
  19. Pestka S., Langer J. A., Zoon K. C., Samuel C. E. Interferons and their actions. Annu Rev Biochem. 1987;56:727–777. doi: 10.1146/annurev.bi.56.070187.003455. [DOI] [PubMed] [Google Scholar]
  20. Samuel C. E. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology. 1991 Jul;183(1):1–11. doi: 10.1016/0042-6822(91)90112-o. [DOI] [PubMed] [Google Scholar]
  21. Sen G. C., Lengyel P. The interferon system. A bird's eye view of its biochemistry. J Biol Chem. 1992 Mar 15;267(8):5017–5020. [PubMed] [Google Scholar]
  22. St Johnston D., Brown N. H., Gall J. G., Jantsch M. A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10979–10983. doi: 10.1073/pnas.89.22.10979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Trewavas A., Gilroy S. Signal transduction in plant cells. Trends Genet. 1991 Nov-Dec;7(11-12):356–361. doi: 10.1016/0168-9525(91)90255-o. [DOI] [PubMed] [Google Scholar]
  24. Watson J. C., Chang H. W., Jacobs B. L. Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. Virology. 1991 Nov;185(1):206–216. doi: 10.1016/0042-6822(91)90768-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES