Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Aug;108(4):1369–1377. doi: 10.1104/pp.108.4.1369

Expression of a zeatin-O-glucoside-degrading beta-glucosidase in Brassica napus.

A Falk 1, L Rask 1
PMCID: PMC157514  PMID: 7659745

Abstract

A beta-glucosidase was purified from seeds of Brassica napus L. (oilseed rape). The 130-kD native enzyme consisted of a disulfide-linked dimer of 64-kD monomers. Internal amino acid sequences were used to construct degenerate primers for polymerase chain reaction-mediated cloning of cDNA for the enzyme. One nearly full-length and one partial beta-glucosidase-encoding cDNA clone were isolated and sequenced. Southern hybridization showed that beta-glucosidase is encoded by a small gene family in B. napus. Northern hybridization showed that the genes are expressed in the seed, with a low degree of expression in other tissues. In the seed, the expression started at 30 days after pollination (DAP), with the highest expression at 40 DAP. The size of the transcript was approximately 1900 nucleotides. In situ hybridization to developing seeds of B. napus showed that the beta-glucosidase expression started at 30 DAP around the provascular tissue in the embryo axis. In the cotyledons, mRNA initially accumulated around the provascular tissues but was detected first at 35 DAP. At 40 DAP, expression occurred in most parts of the seed. In situ hybridization also detected beta-glucosidase mRNA in shoots, young roots, and the basal part of the hypocotyls. Zeatin-O-glucoside was identified as a natural substrate for B. napus beta-glucosidase.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., Palme K. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science. 1993 Nov 12;262(5136):1051–1054. doi: 10.1126/science.8235622. [DOI] [PubMed] [Google Scholar]
  2. Dobberstein B., Garoff H., Warren G., Robinson P. J. Cell-free synthesis and membrane insertion of mouse H-2Dd histocompatibility antigen and beta 2-microglobulin. Cell. 1979 Aug;17(4):759–769. doi: 10.1016/0092-8674(79)90316-7. [DOI] [PubMed] [Google Scholar]
  3. Ellerström M., Josefsson L. G., Rask L., Ronne H. Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast. Plant Mol Biol. 1992 Feb;18(3):557–566. doi: 10.1007/BF00040671. [DOI] [PubMed] [Google Scholar]
  4. Esen A., Cokmus C. Maize genotypes classified as null at the glu locus have beta-glucosidase activity and immunoreactive protein. Biochem Genet. 1990 Aug;28(7-8):319–336. doi: 10.1007/BF02401422. [DOI] [PubMed] [Google Scholar]
  5. Estruch J. J., Chriqui D., Grossmann K., Schell J., Spena A. The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J. 1991 Oct;10(10):2889–2895. doi: 10.1002/j.1460-2075.1991.tb07838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Falk A., Taipalensuu J., Ek B., Lenman M., Rask L. Characterization of rapeseed myrosinase-binding protein. Planta. 1995;195(3):387–395. doi: 10.1007/BF00202596. [DOI] [PubMed] [Google Scholar]
  7. Lenman M., Falk A., Rödin J., Höglund A. S., Ek B., Rask L. Differential expression of myrosinase gene families. Plant Physiol. 1993 Nov;103(3):703–711. doi: 10.1104/pp.103.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lenman M., Rödin J., Josefsson L. G., Rask L. Immunological characterization of rapeseed myrosinase. Eur J Biochem. 1990 Dec 27;194(3):747–753. doi: 10.1111/j.1432-1033.1990.tb19465.x. [DOI] [PubMed] [Google Scholar]
  9. Mkpong O. E., Yan H., Chism G., Sayre R. T. Purification, characterization, and localization of linamarase in cassava. Plant Physiol. 1990 May;93(1):176–181. doi: 10.1104/pp.93.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oxtoby E., Dunn M. A., Pancoro A., Hughes M. A. Nucleotide and derived amino acid sequence of the cyanogenic beta-glucosidase (linamarase) from white clover (Trifolium repens L.). Plant Mol Biol. 1991 Aug;17(2):209–219. doi: 10.1007/BF00039495. [DOI] [PubMed] [Google Scholar]
  11. Rödin J., Sjödahl S., Josefsson L. G., Rask L. Characterization of a Brassica napus gene encoding a cruciferin subunit: estimation of sizes of cruciferin gene families. Plant Mol Biol. 1992 Nov;20(3):559–563. doi: 10.1007/BF00040615. [DOI] [PubMed] [Google Scholar]
  12. Selmar D., Lieberei R., Biehl B., Voigt J. Hevea Linamarase-A Nonspecific beta-Glycosidase. Plant Physiol. 1987 Mar;83(3):557–563. doi: 10.1104/pp.83.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sjödahl S., Gustavsson H. O., Rödin J., Lenman M., Höglund A. S., Rask L. Cruciferin gene families are expressed coordinately but with tissue-specific differences during Brassica napus seed development. Plant Mol Biol. 1993 Dec;23(6):1165–1176. doi: 10.1007/BF00042350. [DOI] [PubMed] [Google Scholar]
  14. Tempst P., Link A. J., Riviere L. R., Fleming M., Elicone C. Internal sequence analysis of proteins separated on polyacrylamide gels at the submicrogram level: improved methods, applications and gene cloning strategies. Electrophoresis. 1990 Jul;11(7):537–553. doi: 10.1002/elps.1150110704. [DOI] [PubMed] [Google Scholar]
  15. Thangstad O. P., Winge P., Husebye H., Bones A. The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae. Plant Mol Biol. 1993 Nov;23(3):511–524. doi: 10.1007/BF00019299. [DOI] [PubMed] [Google Scholar]
  16. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES