Abstract
Proline (Pro) accumulation has been correlated with tolerance to drought and salinity stresses in plants. Therefore, overproduction of Pro in plants may lead to increased tolerance against these abiotic stresses. To test this possibility, we overexpressed in tobacco the mothbean [delta]-pyrroline-5-carboxylate synthetase, a bifunctional enzyme able to catalyze the conversion of glutamate to [delta]-pyrroline-5-carboxylate, which is then reduced to Pro. The transgenic plants produced a high level of the enzyme and synthesized 10- to 18-fold more Pro than control plants. These results suggest that activity of the first enzyme of the pathway is the rate-limiting factor in Pro synthesis. Exogenous supply of nitrogen further enhanced Pro production. The osmotic potentials of leaf sap from transgenic plants were less decreased under water-stress conditions compared to those of control plants. Overproduction of Pro also enhanced root biomass and flower development in transgenic plants under drought-stress conditions. These data demonstrated that Pro acts as an osmoprotectant and that overproduction of Pro results in the increased tolerance to osmotic stress in plants.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boggess S. F. Contribution of Arginine to Proline Accumulation in Water-stressed Barley Leaves. Plant Physiol. 1976 Dec;58(6):796–797. doi: 10.1104/pp.58.6.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer J. S. Plant productivity and environment. Science. 1982 Oct 29;218(4571):443–448. doi: 10.1126/science.218.4571.443. [DOI] [PubMed] [Google Scholar]
- Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
- Delauney A. J., Hu C. A., Kishor P. B., Verma D. P. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem. 1993 Sep 5;268(25):18673–18678. [PubMed] [Google Scholar]
- Delauney A. J., Verma D. P. A soybean gene encoding delta 1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol Gen Genet. 1990 May;221(3):299–305. doi: 10.1007/BF00259392. [DOI] [PubMed] [Google Scholar]
- Deutch A. H., Rushlow K. E., Smith C. J. Analysis of the Escherichia coli proBA locus by DNA and protein sequencing. Nucleic Acids Res. 1984 Aug 10;12(15):6337–6355. doi: 10.1093/nar/12.15.6337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutch A. H., Smith C. J., Rushlow K. E., Kretschmer P. J. Escherichia coli delta 1-pyrroline-5-carboxylate reductase: gene sequence, protein overproduction and purification. Nucleic Acids Res. 1982 Dec 11;10(23):7701–7714. doi: 10.1093/nar/10.23.7701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurdon J. B. Embryonic induction--molecular prospects. Development. 1987 Mar;99(3):285–306. doi: 10.1242/dev.99.3.285. [DOI] [PubMed] [Google Scholar]
- Hu C. A., Delauney A. J., Verma D. P. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9354–9358. doi: 10.1073/pnas.89.19.9354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEMBLE A. R., MACPHERSON H. T. Liberation of amino acids in perennial rye grass during wilting. Biochem J. 1954 Sep;58(1):46–49. doi: 10.1042/bj0580046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larosa P. C., Rhodes D., Rhodes J. C., Bressan R. A., Csonka L. N. Elevated Accumulation of Proline in NaCl-Adapted Tobacco Cells Is Not Due to Altered Delta-Pyrroline-5-Carboxylate Reductase. Plant Physiol. 1991 May;96(1):245–250. doi: 10.1104/pp.96.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Rudulier D., Strom A. R., Dandekar A. M., Smith L. T., Valentine R. C. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. doi: 10.1126/science.224.4653.1064. [DOI] [PubMed] [Google Scholar]
- Paleg L. G., Stewart G. R., Bradbeer J. W. Proline and glycine betaine influence protein solvation. Plant Physiol. 1984 Aug;75(4):974–978. doi: 10.1104/pp.75.4.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schobert B. Is there an osmotic regulatory mechanism in algae and higher plants? J Theor Biol. 1977 Sep 7;68(1):17–26. doi: 10.1016/0022-5193(77)90224-7. [DOI] [PubMed] [Google Scholar]
- Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart C. R. Inhibition of proline oxidation by water stress. Plant Physiol. 1977 May;59(5):930–932. doi: 10.1104/pp.59.5.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szoke A., Miao G. H., Hong Z., Verma D. P. Subcellular location of delta-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol. 1992 Aug;99(4):1642–1649. doi: 10.1104/pp.99.4.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarczynski M. C., Jensen R. G., Bohnert H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993 Jan 22;259(5094):508–510. doi: 10.1126/science.259.5094.508. [DOI] [PubMed] [Google Scholar]
- Voetberg G. S., Sharp R. E. Growth of the Maize Primary Root at Low Water Potentials : III. Role of Increased Proline Deposition in Osmotic Adjustment. Plant Physiol. 1991 Aug;96(4):1125–1130. doi: 10.1104/pp.96.4.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]