Abstract
The 16-kD proteolipid subunit is the principal integral membrane protein of the vacuolar H(+)-ATPase (V-ATPase) complex that forms the proton channel responsible for translocating protons across lipid bilayers. Two degenerate synthetic oligonucleotides, COT11 and COT12, corresponding to highly conserved transmembrane domains in all 16-kD subunits sequenced so far, were used to amplify a partial cDNA of the V-ATPase proteolipid subunit from cotton (Gossypium hirsutum L.) by polymerase chain reaction (PCR). These PCR products were used to isolate two full-length cDNAs from a -3 d postanthesis cotton ovule library. Both clones, CVA16.2 and CVA16.4, consisting of 816 and 895 bp, respectively, encode the 16-kD proteolipid subunit of the V-ATPase. At the nucleotide level, the complete sequences of the two clones show 73.5% identity, but share about 95% identity within the coding region, although the two polypeptides differ by only one amino acid. Comparison of deduced amino acid sequences of the proteolipid subunits revealed that the four transmembrane domains and the two cytosolic extramembrane domains are highly conserved in all eukaryotes. Southern blot analysis of cotton genomic DNA showed that these clones belong to small gene families in related diploid and allotetraploid species. Northern blot analysis suggested that the three major V-ATPase subunits (69, 60, and 16 kD) are coordinately regulated, in part, at the transcriptional level. RNA analysis and reverse-transcription PCR established that 16-kD proteolipid transcripts differentially accumulate in different tissues and increase dramatically in tissues undergoing rapid expansion, particularly in anthers, ovules, and petals. The CVA16.4 proteolipid transcript is the most prevalent of the two proteolipid messages in expanding ovules harvested 10 d post-anthesis. In contrast, the two proteolipid mRNAs accumulate to similar levels in developing petals.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chanson A., Taiz L. Evidence for an ATP-Dependent Proton Pump on the Golgi of Corn Coleoptiles. Plant Physiol. 1985 Jun;78(2):232–240. doi: 10.1104/pp.78.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross R. L., Taiz L. Gene duplication as a means for altering H+/ATP ratios during the evolution of FoF1 ATPases and synthases. FEBS Lett. 1990 Jan 1;259(2):227–229. doi: 10.1016/0014-5793(90)80014-a. [DOI] [PubMed] [Google Scholar]
- DuPont F. M., Morrissey P. J. Subunit composition and Ca(2+)-ATPase activity of the vacuolar ATPase from barley roots. Arch Biochem Biophys. 1992 May 1;294(2):341–346. doi: 10.1016/0003-9861(92)90693-q. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Finbow M. E., Eliopoulos E. E., Jackson P. J., Keen J. N., Meagher L., Thompson P., Jones P., Findlay J. B. Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H(+)-ATPase. Protein Eng. 1992 Jan;5(1):7–15. doi: 10.1093/protein/5.1.7. [DOI] [PubMed] [Google Scholar]
- Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. doi: 10.1152/physrev.1989.69.3.765. [DOI] [PubMed] [Google Scholar]
- Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
- Gluck S. L. The vacuolar H(+)-ATPases: versatile proton pumps participating in constitutive and specialized functions of eukaryotic cells. Int Rev Cytol. 1993;137C:105–137. [PubMed] [Google Scholar]
- Gogarten J. P., Fichmann J., Braun Y., Morgan L., Styles P., Taiz S. L., DeLapp K., Taiz L. The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot. Plant Cell. 1992 Jul;4(7):851–864. doi: 10.1105/tpc.4.7.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guarnieri F. G., Arterburn L. M., Penno M. B., Cha Y., August J. T. The motif Tyr-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein 1. J Biol Chem. 1993 Jan 25;268(3):1941–1946. [PubMed] [Google Scholar]
- Hanada H., Hasebe M., Moriyama Y., Maeda M., Futai M. Molecular cloning of cDNA encoding the 16 KDa subunit of vacuolar H(+)-ATPase from mouse cerebellum. Biochem Biophys Res Commun. 1991 May 15;176(3):1062–1067. doi: 10.1016/0006-291x(91)90391-j. [DOI] [PubMed] [Google Scholar]
- Hasebe M., Hanada H., Moriyama Y., Maeda M., Futai M. Vacuolar type H(+)-ATPase genes: presence of four genes including pseudogenes for the 16-kDa proteolipid subunit in the human genome. Biochem Biophys Res Commun. 1992 Mar 16;183(2):856–863. doi: 10.1016/0006-291x(92)90562-y. [DOI] [PubMed] [Google Scholar]
- Kaestner K. H., Randall S. K., Sze H. N,N'-dicyclohexylcarbodiimide-binding proteolipid of the vacuolar H+-ATPase from oat roots. J Biol Chem. 1988 Jan 25;263(3):1282–1287. [PubMed] [Google Scholar]
- Klionsky D. J., Emr S. D. Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J. 1989 Aug;8(8):2241–2250. doi: 10.1002/j.1460-2075.1989.tb08348.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klionsky D. J., Nelson H., Nelson N. Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae. J Biol Chem. 1992 Feb 15;267(5):3416–3422. [PubMed] [Google Scholar]
- Maeshima M., Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem. 1989 Nov 25;264(33):20068–20073. [PubMed] [Google Scholar]
- Mandel M., Moriyama Y., Hulmes J. D., Pan Y. C., Nelson H., Nelson N. cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5521–5524. doi: 10.1073/pnas.85.15.5521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manolson M. F., Rea P. A., Poole R. J. Identification of 3-O-(4-benzoyl)benzoyladenosine 5'-triphosphate- and N,N'-dicyclohexylcarbodiimide-binding subunits of a higher plant H+-translocating tonoplast ATPase. J Biol Chem. 1985 Oct 5;260(22):12273–12279. [PubMed] [Google Scholar]
- Matsuura-Endo C., Maeshima M., Yoshida S. Subunit composition of vacuolar membrane H(+)-ATPase from mung bean. Eur J Biochem. 1990 Feb 14;187(3):745–751. doi: 10.1111/j.1432-1033.1990.tb15362.x. [DOI] [PubMed] [Google Scholar]
- Meagher L., McLean P., Finbow M. E. Sequence of a cDNA from Drosophila coding for the 16 kD proteolipid component of the vacuolar H(+)-ATPase. Nucleic Acids Res. 1990 Nov 25;18(22):6712–6712. doi: 10.1093/nar/18.22.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narasimhan M. L., Binzel M. L., Perez-Prat E., Chen Z., Nelson D. E., Singh N. K., Bressan R. A., Hasegawa P. M. NaCl Regulation of Tonoplast ATPase 70-Kilodalton Subunit mRNA in Tobacco Cells. Plant Physiol. 1991 Oct;97(2):562–568. doi: 10.1104/pp.97.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson H., Nelson N. Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A. 1990 May;87(9):3503–3507. doi: 10.1073/pnas.87.9.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson N., Taiz L. The evolution of H+-ATPases. Trends Biochem Sci. 1989 Mar;14(3):113–116. doi: 10.1016/0968-0004(89)90134-5. [DOI] [PubMed] [Google Scholar]
- Parry R. V., Turner J. C., Rea P. A. High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits. Revised subunit composition. J Biol Chem. 1989 Nov 25;264(33):20025–20032. [PubMed] [Google Scholar]
- Phillips A. L., Huttly A. K. Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, gamma-TIP, is increased by GA3. Plant Mol Biol. 1994 Feb;24(4):603–615. doi: 10.1007/BF00023557. [DOI] [PubMed] [Google Scholar]
- Raymond C. K., Howald-Stevenson I., Vater C. A., Stevens T. H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 1992 Dec;3(12):1389–1402. doi: 10.1091/mbc.3.12.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeger M., Payne G. S. Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae. J Cell Biol. 1992 Aug;118(3):531–540. doi: 10.1083/jcb.118.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silflow C. D., Hammett J. R., Key J. L. Sequence complexity of polyadenylated ribonucleic acid from soybean suspension culture cells. Biochemistry. 1979 Jun 26;18(13):2725–2731. doi: 10.1021/bi00580a006. [DOI] [PubMed] [Google Scholar]
- Sze H., Ward J. M., Lai S. Vacuolar H(+)-translocating ATPases from plants: structure, function, and isoforms. J Bioenerg Biomembr. 1992 Aug;24(4):371–381. doi: 10.1007/BF00762530. [DOI] [PubMed] [Google Scholar]
- Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
- Wan C. Y., Wilkins T. A. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem. 1994 Nov 15;223(1):7–12. doi: 10.1006/abio.1994.1538. [DOI] [PubMed] [Google Scholar]
- Wan C. Y., Wilkins T. A. Isolation of multiple cDNAs encoding the vacuolar H(+)-ATPase subunit B from developing cotton (Gossypium hirsutum L.) ovules. Plant Physiol. 1994 Sep;106(1):393–394. doi: 10.1104/pp.106.1.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wan C. Y., Wilkins T. A. Spermidine facilitates PCR amplification of target DNA. PCR Methods Appl. 1993 Dec;3(3):208–210. doi: 10.1101/gr.3.3.208. [DOI] [PubMed] [Google Scholar]
- Ward J. M., Sze H. Subunit Composition and Organization of the Vacuolar H-ATPase from Oat Roots. Plant Physiol. 1992 May;99(1):170–179. doi: 10.1104/pp.99.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamashiro C. T., Kane P. M., Wolczyk D. F., Preston R. A., Stevens T. H. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol. 1990 Jul;10(7):3737–3749. doi: 10.1128/mcb.10.7.3737. [DOI] [PMC free article] [PubMed] [Google Scholar]