Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Aug;108(4):1471–1477. doi: 10.1104/pp.108.4.1471

Diurnal Regulation of Leaf Blade Elongation in Rice by CO2 (Is it Related to Sucrose-Phosphate Synthase Activity?).

S P Seneweera 1, A S Basra 1, E W Barlow 1, J P Conroy 1
PMCID: PMC157526  PMID: 12228556

Abstract

The relationship between leaf blade elongation rates (LER) and sucrose-phosphate synthase (SPS) activity was investigated at different times during ontogeny of rice (Oryza sativa L. cv Jarrah) grown in flooded soil at either 350 or 700 [mu]L CO2 L-1. High CO2 concentrations increased LER of expanding blades and in vivo activity (Vlimiting) SPS activity of expanded blades during the early vegetative stage (21 d after planting [DAP]), when tiller number was small and growing blades were strong carbohydrate sinks. Despite a constant light environment, there was a distinct diurnal pattern in LER, Vlimiting SPS activity, and concentration of soluble sugars, with an increase in the early part of the light period and a decrease later in the light period. The strong correlation (r = 0.65) between LER and Vlimiting SPS activity over the diurnal cycle indicated that SPS activity played an important role in controlling blade growth. The higher Vlimiting SPS activity at elevated CO2 at 21 DAP was caused by an increase in the activation state of the enzyme rather than an increase in Vmax. Fructose and glucose accumulated to a greater extent than sucrose at high CO2 and may have been utilized for synthesis of cell-wall components, contributing to higher specific leaf weight. By the mid-tillering stage (42 DAP), CO2 enrichment enhanced Vlimiting and Vmax activities of source blades. Nevertheless, LER was depressed by high CO2, probably because tillers were stronger carbohydrate sinks than growing blades.

Full Text

The Full Text of this article is available as a PDF (652.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann M., Matile P., Keller F. Metabolism of the Raffinose Family Oligosaccharides in Leaves of Ajuga reptans L. (Cold Acclimation, Translocation, and Sink to Source Transition: Discovery of Chain Elongation Enzyme). Plant Physiol. 1994 Aug;105(4):1335–1345. doi: 10.1104/pp.105.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Huber S. C., Huber J. L. Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol. 1992 Aug;99(4):1275–1278. doi: 10.1104/pp.99.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Huber S. C., Israel D. W. Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) Leaves. Plant Physiol. 1982 Mar;69(3):691–696. doi: 10.1104/pp.69.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kalt-Torres W., Huber S. C. Diurnal Changes in Maize Leaf Photosynthesis : III. Leaf Elongation Rate in Relation to Carbohydrates and Activities of Sucrose Metabolizing Enzymes in Elongating Leaf Tissue. Plant Physiol. 1987 Feb;83(2):294–298. doi: 10.1104/pp.83.2.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Makino A., Nakano H., Mae T. Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome f, and Sucrose Synthesis Enzymes in Rice Leaves to Leaf Nitrogen and Their Relationships to Photosynthesis. Plant Physiol. 1994 May;105(1):173–179. doi: 10.1104/pp.105.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Masle J., Hudson G. S., Badger M. R. Effects of Ambient CO2 Concentration on Growth and Nitrogen Use in Tobacco (Nicotiana tabacum) Plants Transformed with an Antisense Gene to the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol. 1993 Dec;103(4):1075–1088. doi: 10.1104/pp.103.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rocher J. P., Prioul J. L., Lecharny A., Reyss A., Joussaume M. Genetic Variability in Carbon Fixation, Sucrose-P-Synthase and ADP Glucose Pyrophosphorylase in Maize Plants of Differing Growth Rate. Plant Physiol. 1989 Feb;89(2):416–420. doi: 10.1104/pp.89.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Weiner H., McMichael R. W., Huber S. C. Identification of factors regulating the phosphorylation status of sucrose-phosphate synthase in vivo. Plant Physiol. 1992 Aug;99(4):1435–1442. doi: 10.1104/pp.99.4.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES