Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Aug;108(4):1479–1486. doi: 10.1104/pp.108.4.1479

Violaxanthin Cycle Pigment Contents in Potato and Tobacco Plants with Genetically Reduced Photosynthetic Capacity.

W Bilger 1, J Fisahn 1, W Brummet 1, J Kossmann 1, L Willmitzer 1
PMCID: PMC157527  PMID: 12228557

Abstract

The influence of photosynthetic activity on the light-dependent adaptation of the pool size of the violaxanthin cycle pigments (violaxanthin + antheraxanthin + zeaxanthin) was studied in leaves of wild-type and transgenic potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.) plants. The genetically manipulated plants expressed an antisense mRNA coding for the chloroplastic fructose-bisphosphatase. Chl fluorescence quenching analysis revealed that the transformed plants exhibited a greatly impaired electron transport capacity. Light-limited and light-saturated non-photochemical quenching was strongly enhanced in the mRNA antisense potato plants. After 7 d of adaptation at various high photosynthetic photon flux densities (PPFDs), the violaxanthin cycle pool size increased, with a progressive elevation in PPFD. The pool size was higher for transgenic potatoes than for wild-type plants at all PPFDs. This difference vanished when pool size was correlated with the PPFD in excess of photosynthesis, as indicated by the epoxidation state of the violaxanthin cycle. Contrasting results were obtained for tobacco; in this species, photosynthetic activity did not affect the pool size. We conclude that regulatory mechanisms exist in potato, by which photosynthetic activity can influence the violaxanthin cycle pool size. Furthermore, evidence is provided that this adaptation of the pool size may contribute to an improved photoprotection of the photosynthetic apparatus under high-light conditions. However, tobacco plants seem to regulate their pool size independently of photosynthetic activity.

Full Text

The Full Text of this article is available as a PDF (831.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gilmore A. M., Yamamoto H. Y. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1899–1903. doi: 10.1073/pnas.89.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Horton P., Ruban A. V., Walters R. G. Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence). Plant Physiol. 1994 Oct;106(2):415–420. doi: 10.1104/pp.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES