Abstract
Iron nutrient deficiency was investigated in leaves of hydroponically grown sugar beets (Beta vulgaris) to determine how ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) gene expression is affected when thylakoid components of photosynthesis are diminished. Rubisco polypeptide content was reduced by 60% in severely iron-stressed leaves, and the reduction was directly correlated to chlorophyll content. The concentration of Rubisco protein in iron-stressed leaves was found to be regulated by availability of mRNAs, and CO2 fixation by Rubisco was reduced from 45 mumol CO2 m-2 s-1 in extracts from iron-sufficient leaves to 20 mumol CO2 m-2 s-1 in extracts from severely stressed leaves. The rate of CO2 fixation was directly correlated to leaf chlorophyll content. Rubisco in iron-sufficient control leaves was 59% activated, whereas in severely stressed leaves grown under the same light, Rubisco was 43% activated. RNA synthesis was reduced by about 50% in iron-deficient leaves, but 16S and 25S rRNA and ctDNA were essentially unaffected by iron stress.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arulanantham A. R., Rao I. M., Terry N. Limiting Factors in Photosynthesis: VI. Regeneration of Ribulose 1,5-Bisphosphate Limits Photosynthesis at Low Photochemical Capacity. Plant Physiol. 1990 Aug;93(4):1466–1475. doi: 10.1104/pp.93.4.1466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerlach W. L., Bedbrook J. R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979 Dec 11;7(7):1869–1885. doi: 10.1093/nar/7.7.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldschmidt-Clermont M., Rahire M. Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol. 1986 Oct 5;191(3):421–432. doi: 10.1016/0022-2836(86)90137-3. [DOI] [PubMed] [Google Scholar]
- Guerinot M. L., Yi Y. Iron: Nutritious, Noxious, and Not Readily Available. Plant Physiol. 1994 Mar;104(3):815–820. doi: 10.1104/pp.104.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lescure A. M., Proudhon D., Pesey H., Ragland M., Theil E. C., Briat J. F. Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8222–8226. doi: 10.1073/pnas.88.18.8222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobréaux S., Hardy T., Briat J. F. Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO J. 1993 Feb;12(2):651–657. doi: 10.1002/j.1460-2075.1993.tb05698.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino A., Nakano H., Mae T. Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome f, and Sucrose Synthesis Enzymes in Rice Leaves to Leaf Nitrogen and Their Relationships to Photosynthesis. Plant Physiol. 1994 May;105(1):173–179. doi: 10.1104/pp.105.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Tolbert N. E., Bieber L. L. Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 1981;72:296–303. doi: 10.1016/s0076-6879(81)72018-4. [DOI] [PubMed] [Google Scholar]
- Nishio J. N., Taylor S. E., Terry N. Changes in Thylakoid Galactolipids and Proteins during Iron Nutrition-Mediated Chloroplast Development. Plant Physiol. 1985 Mar;77(3):705–711. doi: 10.1104/pp.77.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perchorowicz J. T., Jensen R. G. Photosynthesis and Activation of Ribulose Bisphosphate Carboxylase in Wheat Seedlings : Regulation by CO(2) and O(2). Plant Physiol. 1983 Apr;71(4):955–960. doi: 10.1104/pp.71.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ragland M., Briat J. F., Gagnon J., Laulhere J. P., Massenet O., Theil E. C. Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem. 1990 Oct 25;265(30):18339–18344. [PubMed] [Google Scholar]
- Shetty A. S., Miller G. W. Influence of Iron Chlorosis on Pigment and Protein Metabolism in Leaves of Nicotiana tabacum L. Plant Physiol. 1966 Mar;41(3):415–421. doi: 10.1104/pp.41.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiller S. C., Kaufman L. S., Thompson W. F., Briggs W. R. Specific mRNA and rRNA Levels in Greening Pea Leaves during Recovery from Iron Stress. Plant Physiol. 1987 Jun;84(2):409–414. doi: 10.1104/pp.84.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocking C. R. Iron deficiency and the structure and physiology of maize chloroplasts. Plant Physiol. 1975 Apr;55(4):626–631. doi: 10.1104/pp.55.4.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streusand V. J., Portis A. R. Rubisco Activase Mediates ATP-Dependent Activation of Ribulose Bisphosphate Carboxylase. Plant Physiol. 1987 Sep;85(1):152–154. doi: 10.1104/pp.85.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor S. E., Terry N., Huston R. P. Limiting Factors in Photosynthesis: III. Effects of Iron Nutrition on the Activities of Three Regulatory Enzymes of Photosynthetic Carbon Metabolism. Plant Physiol. 1982 Nov;70(5):1541–1543. doi: 10.1104/pp.70.5.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]