Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Aug;108(4):1495–1503. doi: 10.1104/pp.108.4.1495

Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh.

D J Bagnall 1, R W King 1, G C Whitelam 1, M T Boylan 1, D Wagner 1, P H Quail 1
PMCID: PMC157529  PMID: 7659750

Abstract

The long-day plant Arabidopsis thaliana (L.) Heynh. flowers early in response to brief end-of-day (EOD) exposures to far-red light (FR) following a fluorescent short day of 8 h. FR promotion of flowering was nullified by subsequent brief red light (R) EOD exposure, indicating phytochrome involvement. The EOD response to R or FR is a robust measure of phytochrome action. Along with their wild-type (WT) parents, mutants deficient in either phytochrome A or B responded similarly to the EOD treatments. Thus, neither phytochrome A nor B exclusively regulated flowering, although phytochrome B controlled hypocotyl elongation. Perhaps a third phytochrome species is important for the EOD responses of the mutants and/or their flowering is regulated by the amount of the FR-absorbing form of phytochrome, irrespective of the phytochrome species. Overexpression of phytochrome A or phytochrome B resulted in differing photoperiod and EOD responses among the genotypes. The day-neutral overexpressor of phytochrome A had an EOD response similar to all of the mutants and WTs, whereas R EOD exposure promoted flowering in the overexpressor of phytochrome B and FR EOD exposure inhibited this promotion. The comparisons between relative flowering times and leaf numbers at flowering of the over-expressors and their WTs were not consistent across photoperiods and light treatments, although both phytochromes A and B contributed to regulating flowering of the transgenic plants.

Full Text

The Full Text of this article is available as a PDF (992.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernier G., Havelange A., Houssa C., Petitjean A., Lejeune P. Physiological Signals That Induce Flowering. Plant Cell. 1993 Oct;5(10):1147–1155. doi: 10.1105/tpc.5.10.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boylan M. T., Quail P. H. Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10806–10810. doi: 10.1073/pnas.88.23.10806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown J. A., Klein W. H. Photomorphogenesis in Arabidopsis thaliana (L.) Heynh: Threshold Intensities and Blue-Far-red Synergism in Floral Induction. Plant Physiol. 1971 Mar;47(3):393–399. doi: 10.1104/pp.47.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dehesh K., Franci C., Parks B. M., Seeley K. A., Short T. W., Tepperman J. M., Quail P. H. Arabidopsis HY8 locus encodes phytochrome A. Plant Cell. 1993 Sep;5(9):1081–1088. doi: 10.1105/tpc.5.9.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnson E., Bradley M., Harberd N. P., Whitelam G. C. Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiol. 1994 May;105(1):141–149. doi: 10.1104/pp.105.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Martinez-Zapater J. M., Somerville C. R. Effect of Light Quality and Vernalization on Late-Flowering Mutants of Arabidopsis thaliana. Plant Physiol. 1990 Mar;92(3):770–776. doi: 10.1104/pp.92.3.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nagatani A., Reed J. W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. doi: 10.1104/pp.102.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Quail P. H., Briggs W. R., Chory J., Hangarter R. P., Harberd N. P., Kendrick R. E., Koornneef M., Parks B., Sharrock R. A., Schafer E. Spotlight on Phytochrome Nomenclature. Plant Cell. 1994 Apr;6(4):468–471. doi: 10.1105/tpc.6.4.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Reed J. W., Nagatani A., Elich T. D., Fagan M., Chory J. Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol. 1994 Apr;104(4):1139–1149. doi: 10.1104/pp.104.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Robson PRH., Whitelam G. C., Smith H. Selected Components of the Shade-Avoidance Syndrome Are Displayed in a Normal Manner in Mutants of Arabidopsis thaliana and Brassica rapa Deficient in Phytochrome B. Plant Physiol. 1993 Aug;102(4):1179–1184. doi: 10.1104/pp.102.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sharrock R. A., Quail P. H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 1989 Nov;3(11):1745–1757. doi: 10.1101/gad.3.11.1745. [DOI] [PubMed] [Google Scholar]
  13. Shinomura T., Nagatani A., Chory J., Furuya M. The Induction of Seed Germination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A. Plant Physiol. 1994 Feb;104(2):363–371. doi: 10.1104/pp.104.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wagner D., Tepperman J. M., Quail P. H. Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell. 1991 Dec;3(12):1275–1288. doi: 10.1105/tpc.3.12.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES