Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Plant Physiology logoLink to Plant Physiology
. 1995 Aug;108(4):1527–1536. doi: 10.1104/pp.108.4.1527

Potassium Fluxes in Chlamydomonas reinhardtii (I.Kinetics and Electrical Potentials).

B Malhotra 1, ADM Glass 1
PMCID: PMC157532  PMID: 12228559

Abstract

Potassium influx and cellular [K+] were measured in the unicellular green alga Chlamydomonas reinhardtii after pretreatment in either 10 or 0 mM external K+ ([K]0). K+ (42K+ or 86Rb+) influx was mediated by a saturable, high-affinity transport system (HATS) at low [K+]0 and a linear, low-affinity transport system at high [K+]o. The HATS was typically more sensitive to metabolic inhibition (and darkness) than the low-affinity transport system. Membrane electrical potentials were determined by measuring the equilibrium distribution of tetraphenylphosphonium. These values, together with estimates of cytoplasmic [K+] (B. Malhotra and A.D.M. Glass [1995] Plant Physiol 108: 1537-1545), demonstrated that at 0.1 mM [K+]0 K+ uptake must be active. At higher [K+]0 (>0.3 mM) K+ influx appeared to be passive and possibly channel mediated. When cells were deprived of K+ for 24 h, the Vmax for the HATS increased from 50 x 10-6 to 85 x 10-6 nmol h-1 cell-1 and the Km value decreased from 0.25 to 0.162 mM. Meanwhile, cellular [K+] declined from 24 x 10-6 to 9 x 10-6 nmol cell-1. During this period influx increased exponentially, reaching its peak value after 18 h of K+ deprivation. This increase of K+ influx was not expressed when cells were exposed to inhibitors of protein synthesis. The use of 42K+ and 86Rb+ in parallel experiments demonstrated that Chlamydomonas discriminated in favor of K+ over Rb+, and this effect increased with the duration of K+ deprivation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber J. The influx of potassium into Chlorella pyrenoidosa. Biochim Biophys Acta. 1968 Sep 17;163(2):141–149. doi: 10.1016/0005-2736(68)90091-6. [DOI] [PubMed] [Google Scholar]
  2. Blatt M. R., Rodriguez-Navarro A., Slayman C. L. Potassium-proton symport in Neurospora: kinetic control by pH and membrane potential. J Membr Biol. 1987;98(2):169–189. doi: 10.1007/BF01872129. [DOI] [PubMed] [Google Scholar]
  3. Epstein E., Hagen C. E. A KINETIC STUDY OF THE ABSORPTION OF ALKALI CATIONS BY BARLEY ROOTS. Plant Physiol. 1952 Jul;27(3):457–474. doi: 10.1104/pp.27.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fernando M., Mehroke J., Glass A. D. De Novo Synthesis of Plasma Membrane and Tonoplast Polypeptides of Barley Roots during Short-Term K Deprivation : In Search of the High-Affinity K Transport System. Plant Physiol. 1992 Nov;100(3):1269–1276. doi: 10.1104/pp.100.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gassmann W., Ward J. M., Schroeder J. I. Physiological Roles of Inward-Rectifying K+ Channels. Plant Cell. 1993 Nov;5(11):1491–1493. doi: 10.1105/tpc.5.11.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glass A. D. Regulation of potassium absorption in barley roots: an allosteric model. Plant Physiol. 1976 Jul;58(1):33–37. doi: 10.1104/pp.58.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacoby B. Light sensitivity of na, rb, and k absorption by different tissues of bean leaves. Plant Physiol. 1975 Jun;55(6):978–981. doi: 10.1104/pp.55.6.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kannan S. Plasmalemma: The Seat of Dual Mechanisms of Ion Absorption in Chlorella pyrenoidosa. Science. 1971 Sep 3;173(4000):927–929. doi: 10.1126/science.173.4000.927. [DOI] [PubMed] [Google Scholar]
  9. Keifer D. W., Spanswick R. M. Activity of the Electrogenic Pump in Chara corallina as Inferred from Measurements of the Membrane Potential, Conductance, and Potassium Permeability. Plant Physiol. 1978 Oct;62(4):653–661. doi: 10.1104/pp.62.4.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kochian L. V., Lucas W. J. Can K+ Channels Do It All? Plant Cell. 1993 Jul;5(7):720–721. doi: 10.1105/tpc.5.7.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kochian L. V., Lucas W. J. Potassium transport in corn roots : I. Resolution of kinetics into a saturable and linear component. Plant Physiol. 1982 Dec;70(6):1723–1731. doi: 10.1104/pp.70.6.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kochian L. V., Shaff J. E., Lucas W. J. High affinity k uptake in maize roots: a lack of coupling with h efflux. Plant Physiol. 1989 Nov;91(3):1202–1211. doi: 10.1104/pp.91.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kochian L. V., Xin-Zhi J., Lucas W. J. Potassium Transport in Corn Roots : IV. Characterization of the Linear Component. Plant Physiol. 1985 Nov;79(3):771–776. doi: 10.1104/pp.79.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Komor E., Tanner W. The determination of the membrane ptoential of Chlorella vulgaris. Evidence for electrogenic sugar transport. Eur J Biochem. 1976 Nov 1;70(1):197–204. doi: 10.1111/j.1432-1033.1976.tb10970.x. [DOI] [PubMed] [Google Scholar]
  15. Malhotra B., Glass ADM. Potassium Fluxes in Chlamydomonas reinhardtii (II. Compartmental Analysis). Plant Physiol. 1995 Aug;108(4):1537–1545. doi: 10.1104/pp.108.4.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nissen P. Multiphasic uptake of potassium by corn roots: no linear component. Plant Physiol. 1989 Jan;89(1):231–237. doi: 10.1104/pp.89.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pitman M. G., Mertz S. M., Graves J. S., Pierce W. S., Higinbotham N. Electrical potential differences in cells of barley roots and their relation to ion uptake. Plant Physiol. 1971 Jan;47(1):76–80. doi: 10.1104/pp.47.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Raven J. A. Nutrient transport in microalgae. Adv Microb Physiol. 1980;21:47–226. doi: 10.1016/s0065-2911(08)60356-2. [DOI] [PubMed] [Google Scholar]
  19. Rhoads D. B., Woo A., Epstein W. Discrimination between Rb+ and K+ by Escherichia coli. Biochim Biophys Acta. 1977 Aug 15;469(1):45–51. doi: 10.1016/0005-2736(77)90324-8. [DOI] [PubMed] [Google Scholar]
  20. Satter R. L., Applewhite P. B., Galston A. W. Rhythmic potassium flux in albizzia: effect of aminophylline, cations, and inhibitors of respiration and protein synthesis. Plant Physiol. 1974 Sep;54(3):280–285. doi: 10.1104/pp.54.3.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schachtman D. P., Schroeder J. I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 1994 Aug 25;370(6491):655–658. doi: 10.1038/370655a0. [DOI] [PubMed] [Google Scholar]
  22. Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]
  23. Serra J. L., Llama M. J., Cadenas E. Nitrate Utilization by the Diatom Skeletonema costatum: I. Kinetics of Nitrate Uptake. Plant Physiol. 1978 Dec;62(6):987–990. doi: 10.1104/pp.62.6.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Siddiqi M. Y., Glass A. D., Ruth T. J., Rufty T. W. Studies of the Uptake of Nitrate in Barley: I. Kinetics of NO(3) Influx. Plant Physiol. 1990 Aug;93(4):1426–1432. doi: 10.1104/pp.93.4.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang M. Y., Siddiqi M. Y., Ruth T. J., Glass ADM. Ammonium Uptake by Rice Roots (II. Kinetics of 13NH4+ Influx across the Plasmalemma). Plant Physiol. 1993 Dec;103(4):1259–1267. doi: 10.1104/pp.103.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES