Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Aug;108(4):1561–1568. doi: 10.1104/pp.108.4.1561

In Vivo Regulatory Phosphorylation of Soybean Nodule Phosphoenolpyruvate Carboxylase.

X Q Zhang 1, B Li 1, R Chollet 1
PMCID: PMC157536  PMID: 12228563

Abstract

In this report we provide evidence that cytosolic phosphoenolpyruvate carboxylase (PEPC) in soybean (Glycine max L.) root nodules is regulated in vivo by a seryl-phosphorylation cycle, as with the C4, Crassulacean acid metabolism, and C3 leaf isoforms. Pretreatment of parent plants by stem girdling for 5 or 14 h caused a significant decrease in the apparent phosphorylation state of nodule PEPC, as indicated by the 50% inhibition constant (L-malate) and specific activity values assayed at suboptimal conditions, whereas short-term darkness alone was without effect. However, extended (26 h) darkness led to the formation of a relatively dephosphorylated nodule PEPC, an effect that was reversed by illuminating the darkened plants for 3 h. This reversal of the apparent phosphorylation state in the light was prevented by concomitant stem girdling. In contrast, the optimal activity of nodule PEPC and its protein level showed little or no change in all pretreated plants. These results suggest that the phosphorylation state of PEPC in soybean root nodules is possibly modulated by photosynthate transported recently from the shoots. In situ [32P]orthophosphate labeling, immunoprecipitation, and phosphoamino acid analyses confirmed directly that PEPC in detached intact soybean nodules is phosphorylated on a serine residue(s).

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Budde R. J., Chollet R. In vitro phosphorylation of maize leaf phosphoenolpyruvate carboxylase. Plant Physiol. 1986 Dec;82(4):1107–1114. doi: 10.1104/pp.82.4.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ching T. M., Hedtke S., Russell S. A., Evans H. J. Energy State and Dinitrogen Fixation in Soybean Nodules of Dark-grown Plants. Plant Physiol. 1975 Apr;55(4):796–798. doi: 10.1104/pp.55.4.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coker G. T., Schubert K. R. Carbon Dioxide Fixation in Soybean Roots and Nodules: I. CHARACTERIZATION AND COMPARISON WITH N(2) FIXATION AND COMPOSITION OF XYLEM EXUDATE DURING EARLY NODULE DEVELOPMENT. Plant Physiol. 1981 Apr;67(4):691–696. doi: 10.1104/pp.67.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duff SMG., Chollet R. In Vivo Regulation of Wheat-Leaf Phosphoenolpyruvate Carboxylase by Reversible Phosphorylation. Plant Physiol. 1995 Mar;107(3):775–782. doi: 10.1104/pp.107.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jiao J. A., Chollet R. Posttranslational regulation of phosphoenolpyruvate carboxylase in c(4) and crassulacean Acid metabolism plants. Plant Physiol. 1991 Apr;95(4):981–985. doi: 10.1104/pp.95.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Job D., Cochet C., Dhien A., Chambaz E. M. A rapid method for screening inhibitor effects: determination of I50 and its standard deviation. Anal Biochem. 1978 Jan;84(1):68–77. doi: 10.1016/0003-2697(78)90484-0. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Le Van Quy, Foyer C., Champigny M. L. Effect of Light and NO(3) on Wheat Leaf Phosphoenolpyruvate Carboxylase Activity: Evidence for Covalent Modulation of the C(3) Enzyme. Plant Physiol. 1991 Dec;97(4):1476–1482. doi: 10.1104/pp.97.4.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li B., Chollet R. Resolution and identification of C4 phosphoenolpyruvate-carboxylase protein-kinase polypeptides and their reversible light activation in maize leaves. Arch Biochem Biophys. 1993 Dec;307(2):416–419. doi: 10.1006/abbi.1993.1609. [DOI] [PubMed] [Google Scholar]
  11. Li B., Chollet R. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Arch Biochem Biophys. 1994 Oct;314(1):247–254. doi: 10.1006/abbi.1994.1437. [DOI] [PubMed] [Google Scholar]
  12. Lin M., Turpin D. H., Plaxton W. C. Pyruvate kinase isozymes from the green alga, Selenastrum minutum. I. Purification and physical and immunological characterization. Arch Biochem Biophys. 1989 Feb 15;269(1):219–227. doi: 10.1016/0003-9861(89)90103-3. [DOI] [PubMed] [Google Scholar]
  13. Miller S. S., Boylan K. L., Vance C. P. Alfalfa Root Nodule Carbon Dioxide Fixation : III. Immunological Studies of Nodule Phosphoenolpyruvate Carboxylase. Plant Physiol. 1987 Jun;84(2):501–508. doi: 10.1104/pp.84.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pathirana S. M., Vance C. P., Miller S. S., Gantt J. S. Alfalfa root nodule phosphoenolpyruvate carboxylase: characterization of the cDNA and expression in effective and plant-controlled ineffective nodules. Plant Mol Biol. 1992 Nov;20(3):437–450. doi: 10.1007/BF00040603. [DOI] [PubMed] [Google Scholar]
  15. Rosendahl L., Vance C. P., Pedersen W. B. Products of Dark CO(2) Fixation in Pea Root Nodules Support Bacteroid Metabolism. Plant Physiol. 1990 May;93(1):12–19. doi: 10.1104/pp.93.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schuller K. A., Turpin D. H., Plaxton W. C. Metabolite regulation of partially purified soybean nodule phosphoenolpyruvate carboxylase. Plant Physiol. 1990 Nov;94(3):1429–1435. doi: 10.1104/pp.94.3.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sugimoto T., Kawasaki T., Kato T., Whittier R. F., Shibata D., Kawamura Y. cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Mol Biol. 1992 Nov;20(4):743–747. doi: 10.1007/BF00046459. [DOI] [PubMed] [Google Scholar]
  18. Walsh K. B., Vessey J. K., Layzell D. B. Carbohydrate supply and n(2) fixation in soybean : the effect of varied daylength and stem girdling. Plant Physiol. 1987 Sep;85(1):137–144. doi: 10.1104/pp.85.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang Y. H., Duff S. M., Lepiniec L., Crétin C., Sarath G., Condon S. A., Vidal J., Gadal P., Chollet R. Site-directed mutagenesis of the phosphorylatable serine (Ser8) in C4 phosphoenolpyruvate carboxylase from sorghum. The effect of negative charge at position 8. J Biol Chem. 1992 Aug 25;267(24):16759–16762. [PubMed] [Google Scholar]
  20. Weaver C. D., Crombie B., Stacey G., Roberts D. M. Calcium-dependent phosphorylation of symbiosome membrane proteins from nitrogen-fixing soybean nodules : evidence for phosphorylation of nodulin-26. Plant Physiol. 1991 Jan;95(1):222–227. doi: 10.1104/pp.95.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weaver C. D., Roberts D. M. Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry. 1992 Sep 22;31(37):8954–8959. doi: 10.1021/bi00152a035. [DOI] [PubMed] [Google Scholar]
  22. Weaver C. D., Shomer N. H., Louis C. F., Roberts D. M. Nodulin 26, a nodule-specific symbiosome membrane protein from soybean, is an ion channel. J Biol Chem. 1994 Jul 8;269(27):17858–17862. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES