Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Aug;108(4):1597–1605. doi: 10.1104/pp.108.4.1597

Localization and Characterization of Peroxidases in the Mitochondria of Chilling-Acclimated Maize Seedlings.

T K Prasad 1, M D Anderson 1, C R Stewart 1
PMCID: PMC157540  PMID: 12228565

Abstract

We present evidence of two peroxidases in maize (Zea mays L.) mitochondria. One of these uses guaiacol and the other uses cytochrome c as the electron donor. Treatments of fresh mitochondria with protease(s) indicate that ascorbate and glutathione peroxidases are likely bound to the mitochondria as cytosolic contaminants, whereas guaiacol and cytochrome peroxidases are localized within the mitochondria. These two mitochondrial peroxidases are distinct from contaminant peroxidases and mitochondrial electron transport enzymes. Cytochrome peroxidase is present within the mitochondrial membranes, whereas guaiacol peroxidase is loosely bound to the mitochondrial envelope. Unlike other cellular guaiacol peroxidases, mitochondrial guaiacol peroxidase is not glycosylated. Digestion of lysed mitochondria with trypsin activated mitochondrial guaiacol peroxidase but inhibited cytochrome peroxidase. Isoelectric focusing gel analysis indicated guaiacol peroxidase as a major isozyme (isoelectric point 6.8) that is also activated by trypsin. No change in the mobility of guaiacol peroxidase due to trypsin treatment on native polyacrylamide gel electrophoresis was observed. Although both peroxidases are induced by chilling acclimation treatments (14[deg]C), only cytochrome peroxidase is also induced by chilling (4[deg]C). Because chilling induces oxidative stress in the maize seedlings and the mitochondria are a target for oxidative stress injury, we suggest that mitochondrial peroxidases play a role similar to catalase in protecting mitochondria from oxidative damage.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  2. Biroc S. L., Etzler M. E. The effect of periodate oxidation and alpha-mannosidase treatment on Dolichos biflorus lectin. Biochim Biophys Acta. 1978 Nov 15;544(1):85–92. doi: 10.1016/0304-4165(78)90212-x. [DOI] [PubMed] [Google Scholar]
  3. DYER J. R. Use of periodate oxidations in biochemical analysis. Methods Biochem Anal. 1956;3:111–152. doi: 10.1002/9780470110195.ch5. [DOI] [PubMed] [Google Scholar]
  4. Hahm S., Durham B., Millett F. Photoinduced electron transfer between cytochrome c peroxidase and horse cytochrome c labeled at specific lysines with (dicarboxybipyridine)(bisbipyridine)ruthenium(II) Biochemistry. 1992 Apr 7;31(13):3472–3477. doi: 10.1021/bi00128a022. [DOI] [PubMed] [Google Scholar]
  5. Havir E. A., McHale N. A. Enhanced-peroxidatic activity in specific catalase isozymes of tobacco, barley, and maize. Plant Physiol. 1989 Nov;91(3):812–815. doi: 10.1104/pp.91.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hu C. F., van Huystee R. B. Role of carbohydrate moieties in peanut (Arachis hypogaea) peroxidases. Biochem J. 1989 Oct 1;263(1):129–135. doi: 10.1042/bj2630129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leaver C. J., Hack E., Forde B. G. Protein synthesis by isolated plant mitochondria. Methods Enzymol. 1983;97:476–484. doi: 10.1016/0076-6879(83)97156-2. [DOI] [PubMed] [Google Scholar]
  8. Moroney J. V., McCarty R. E. Effect of proteolytic digestion on the Ca2+-ATPase activity and subunits of latent and thiol-activated chloroplast coupling factor 1. J Biol Chem. 1982 May 25;257(10):5910–5914. [PubMed] [Google Scholar]
  9. Plesnicar M., Bonner W. D., Jr, Storey B. T. Peroxidase associated with higher plant mitochondria. Plant Physiol. 1967 Mar;42(3):366–370. doi: 10.1104/pp.42.3.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Prasad T. K., Cline M. G. Shoot inversion inhibition of stem elongation in Pharbitis nil: a possible role for ethylene-induced glycoprotein and lignin. Plant Physiol. 1987;85:104–108. doi: 10.1104/pp.85.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stegemann H., Francksen H., Macko V. Potato proteins: genetic and physiological changes, evaluated by one- and two-dimensional PAA-gel-techniques. Z Naturforsch C. 1973 Nov-Dec;28(11):722–732. doi: 10.1515/znc-1973-11-1213. [DOI] [PubMed] [Google Scholar]
  12. Toguri T., Muto S., Miyachi S. Biosynthesis and intracellular processing of carbonic anhydrase in Chlamydomonas reinhardtii. Eur J Biochem. 1986 Aug 1;158(3):443–450. doi: 10.1111/j.1432-1033.1986.tb09773.x. [DOI] [PubMed] [Google Scholar]
  13. Verduyn C., Giuseppin M. L., Scheffers W. A., van Dijken J. P. Hydrogen peroxide metabolism in yeasts. Appl Environ Microbiol. 1988 Aug;54(8):2086–2090. doi: 10.1128/aem.54.8.2086-2090.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vidal V., Ranty B., Dillenschneider M., Charpenteau M., Ranjeva R. Molecular characterization of a 70 kDa heat-shock protein of bean mitochondria. Plant J. 1993 Jan;3(1):143–150. doi: 10.1046/j.1365-313x.1993.t01-6-00999.x. [DOI] [PubMed] [Google Scholar]
  15. YAMAZAKI I., MASON H. S., PIETTE L. Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates by peroxidase. J Biol Chem. 1960 Aug;235:2444–2449. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES