Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Aug;108(4):1657–1664. doi: 10.1104/pp.108.4.1657

Isolation and Characterization of a Protein Associated with Carotene Globules in the Alga Dunaliella bardawil.

A Katz 1, C Jimenez 1, U Pick 1
PMCID: PMC157547  PMID: 12228570

Abstract

The halotolerant alga Dunaliella bardawil accumulates very large amounts of [beta]-carotene when exposed to high light intensity. The accumulated [beta]-carotene is concentrated in small, oily globules within the chloroplast and has been suggested to protect the alga against photodamage by high irradiation (A. Ben-Amotz, A. Katz, M. Avron [1982] J Phycol 18:529-537;A. Ben-Amotz, M. Avron [1983] Plant Physiol 72: 593-597; A. Ben-Amotz, A. Shaish, M. Avron [1989] Plant Physiol 91: 1040-1043). A 38-kD protein was identified and purified from [beta]-carotene globules and was designated carotene globule protein (Cgp). Induction of Cgp occurs in parallel with [beta]-carotene accumulation in D. bardawil grown under different inductive conditions. Cgp is overproduced in a constitutive mutant strain that overproduces [beta]-carotene and is not detected in Dunaliella salina, a species that does not accumulate [beta]-carotene. Cgp production was not suppressed by norflurazon, an inhibitor of [beta]-carotene synthesis that leads to accumulation of the carotenoid precursor phytoene. Immunogold-labeling analysis by electron microscopy demonstrates that the protein is localized at the periphery of the globules. Proteolytic cleavage by trypsin enhances the coalescence and destruction of the globules, in parallel with Cgp disappearance. It is suggested that the function of Cgp is to stabilize the structure of the globules within the chloroplast.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Amotz A., Avron M. On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. Plant Physiol. 1983 Jul;72(3):593–597. doi: 10.1104/pp.72.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Amotz A., Shaish A., Avron M. Mode of Action of the Massively Accumulated beta-Carotene of Dunaliella bardawil in Protecting the Alga against Damage by Excess Irradiation. Plant Physiol. 1989 Nov;91(3):1040–1043. doi: 10.1104/pp.91.3.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cervantes-Cervantes M., Hadjeb N., Newman L. A., Price C. A. ChrA Is a Carotenoid-Binding Protein in Chromoplasts of Capsicum annuum. Plant Physiol. 1990 Apr;92(4):1241–1243. doi: 10.1104/pp.92.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  5. Deruère J., Römer S., d'Harlingue A., Backhaus R. A., Kuntz M., Camara B. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell. 1994 Jan;6(1):119–133. doi: 10.1105/tpc.6.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Himmelhoch S. A negative contrast stain for ultra-thin frozen sections. Microsc Res Tech. 1994 Sep 1;29(1):23–28. doi: 10.1002/jemt.1070290104. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  9. Sadka A., Himmelhoch S., Zamir A. A 150 Kilodalton Cell Surface Protein Is Induced by Salt in the Halotolerant Green Alga Dunaliella salina. Plant Physiol. 1991 Mar;95(3):822–831. doi: 10.1104/pp.95.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Smirra I., Halevy A. H., Vainstein A. Isolation and Characterization of a Chromoplast-Specific Carotenoid-Associated Protein from Cucumis sativus Corollas. Plant Physiol. 1993 Jun;102(2):491–496. doi: 10.1104/pp.102.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  12. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tzen J. T., Huang A. H. Surface structure and properties of plant seed oil bodies. J Cell Biol. 1992 Apr;117(2):327–335. doi: 10.1083/jcb.117.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES