Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Sep;109(1):41–52. doi: 10.1104/pp.109.1.41

Stress activation of a bean hydroxyproline-rich glycoprotein promoter is superimposed on a pattern of tissue-specific developmental expression.

K L Wycoff 1, P A Powell 1, R A Gonzales 1, D R Corbin 1, C Lamb 1, R A Dixon 1
PMCID: PMC157562  PMID: 7480331

Abstract

The HRGP4.1 gene, which encodes a cell wall hydroxyproline-rich glycoprotein, was isolated from a genomic library of bean (Phaseolus vulgaris L.). Two transcripts, one induced by wounding and one by elicitation, were transcribed from the same initiation site. The gene encodes a polypeptide of 580 amino acids with the amino terminal half consisting of repeats of the sequence serine-(proline)4-lysine-histidine-serine-(proline)4-(tyrosine)3-histidi ne and the carboxyl-terminal half composed of repeats of the sequence serine-(proline)4-valine-tyrosine-lysine-tyrosine-lysine. A 964-bp upstream promoter fragment was translationally fused to the beta-glucuronidase reporter gene (Escherichia coli uidA) and transferred into tobacco by Agrobacterium tumefaciens-mediated leaf disc transformation. Analysis of beta-glucuronidase activity showed that wounding caused local activation of the HRGP4.1 promoter in the phloem. Infection by tobacco mosaic virus was a less effective inducer than wounding. Stress induction was superimposed on tissue-specific developmental expression in stem nodes and root tips, suggesting that HRGP4.1 may have specific structural roles in development as well as protective functions in defense. Deletion analysis showed that control of tissue specificity and wound inducibility lies in a region between -94 and -251 relative to the transcription start site and that activation by infection lies outside that region.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Biggs K. J., Fry S. C. Solubilization of covalently bound extensin from capsicum cell walls. Plant Physiol. 1990 Jan;92(1):197–204. doi: 10.1104/pp.92.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boorstein W. R., Craig E. A. Primer extension analysis of RNA. Methods Enzymol. 1989;180:347–369. doi: 10.1016/0076-6879(89)80111-9. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Corbin D. R., Sauer N., Lamb C. J. Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Mol Cell Biol. 1987 Dec;7(12):4337–4344. doi: 10.1128/mcb.7.12.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dietrich R. A., Radke S. E., Harada J. J. Downstream DNA sequences are required to activate a gene expressed in the root cortex of embryos and seedlings. Plant Cell. 1992 Nov;4(11):1371–1382. doi: 10.1105/tpc.4.11.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holsters M., de Waele D., Depicker A., Messens E., van Montagu M., Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet. 1978 Jul 11;163(2):181–187. doi: 10.1007/BF00267408. [DOI] [PubMed] [Google Scholar]
  8. Hong J. C., Cheong Y. H., Nagao R. T., Bahk J. D., Cho M. J., Key J. L. Isolation and characterization of three soybean extensin cDNAs. Plant Physiol. 1994 Feb;104(2):793–796. doi: 10.1104/pp.104.2.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huberman J. A., Kornberg A., Alberts B. M. Stimulation of T4 bacteriophage DNA polymerase by the protein product of T4 gene 32. J Mol Biol. 1971 Nov 28;62(1):39–52. doi: 10.1016/0022-2836(71)90129-x. [DOI] [PubMed] [Google Scholar]
  10. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keller B., Lamb C. J. Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev. 1989 Oct;3(10):1639–1646. doi: 10.1101/gad.3.10.1639. [DOI] [PubMed] [Google Scholar]
  12. Keller B., Sauer N., Lamb C. J. Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 1988 Dec 1;7(12):3625–3633. doi: 10.1002/j.1460-2075.1988.tb03243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kitamura Y., Arahira M., Itoh Y., Fukazawa C. The complete nucleotide sequence of soybean glycinin A2B1a gene spanning to another glycinin gene A1aB1b. Nucleic Acids Res. 1990 Jul 25;18(14):4245–4245. doi: 10.1093/nar/18.14.4245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Larkin J. C., Oppenheimer D. G., Pollock S., Marks M. D. Arabidopsis GLABROUS1 Gene Requires Downstream Sequences for Function. Plant Cell. 1993 Dec;5(12):1739–1748. doi: 10.1105/tpc.5.12.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leach J. E., Cantrell M. A., Sequeira L. Hydroxyproline-rich bacterial agglutinin from potato : extraction, purification, and characterization. Plant Physiol. 1982 Nov;70(5):1353–1358. doi: 10.1104/pp.70.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liang X. W., Dron M., Schmid J., Dixon R. A., Lamb C. J. Developmental and environmental regulation of a phenylalanine ammonia-lyase-beta-glucuronidase gene fusion in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9284–9288. doi: 10.1073/pnas.86.23.9284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindstrom J. T., Vodkin L. O., Harding R. W., Goeken R. M. Expression of soybean lectin gene deletions in tobacco. Dev Genet. 1990;11(2):160–167. doi: 10.1002/dvg.1020110206. [DOI] [PubMed] [Google Scholar]
  19. Mellon J. E., Helgeson J. P. Interaction of a hydroxyproline-rich glycoprotein from tobacco callus with potential pathogens. Plant Physiol. 1982 Aug;70(2):401–405. doi: 10.1104/pp.70.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oommen A., Dixon R. A., Paiva N. L. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell. 1994 Dec;6(12):1789–1803. doi: 10.1105/tpc.6.12.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rocha-Sosa M., Sonnewald U., Frommer W., Stratmann M., Schell J., Willmitzer L. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 1989 Jan;8(1):23–29. doi: 10.1002/j.1460-2075.1989.tb03344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Showalter A. M., Bell J. N., Cramer C. L., Bailey J. A., Varner J. E., Lamb C. J. Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6551–6555. doi: 10.1073/pnas.82.19.6551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Showalter A. M. Structure and function of plant cell wall proteins. Plant Cell. 1993 Jan;5(1):9–23. doi: 10.1105/tpc.5.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Templeton M. D., Dixon R. A., Lamb C. J., Lawton M. A. Hydroxyproline-Rich Glycoprotein Transcripts Exhibit Different Spatial Patterns of Accumulation in Compatible and Incompatible Interactions between Phaseolus vulgaris and Colletotrichum lindemuthianum. Plant Physiol. 1990 Nov;94(3):1265–1269. doi: 10.1104/pp.94.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ye Z. H., Varner J. E. Tissue-Specific Expression of Cell Wall Proteins in Developing Soybean Tissues. Plant Cell. 1991 Jan;3(1):23–37. doi: 10.1105/tpc.3.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES