Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Sep;109(1):113–121. doi: 10.1104/pp.109.1.113

Induction of Hexose-Phosphate Translocator Activity in Spinach Chloroplasts.

W P Quick 1, R Scheibe 1, H E Neuhaus 1
PMCID: PMC157568  PMID: 12228584

Abstract

Many environmental and experimental conditions lead to accumulation of carbohydrates in photosynthetic tissues. This situation is typically associated with major changes in the mRNA and protein complement of the cell, including metabolic repression of photosynthetic gene expression, which can be induced by feeding carbohydrates directly to leaves. In this study we examined the carbohydrate transport properties of chloroplasts isolated from spinach (Spinacia oleracea L.) leaves fed with glucose for several days. These chloroplasts contain large quantities of starch, can perform photosynthetic 3-phosphoglycerate reduction, and surprisingly also have the ability to perform starch synthesis from exogenous glucose-6-phosphate (Glc-6-P) both in the light and in darkness, similarly to heterotrophic plastids. Glucose-1-phosphate does not act as an exogenous precursor for starch synthesis. Light, ATP, and 3-phosphoglyceric acid stimulate Glc-6-P-dependent starch synthesis. Short-term uptake experiments indicate that a novel Glc-6-P-translocator capacity is present in the envelope membrane, exhibiting an apparent Km of 0.54 mM and a Vmax of 2.9 [mu]mol Glc-6-P mg-1 chlorophyll h-1. Similar results were obtained with chloroplasts isolated from glucose-fed potato leaves and from water-stressed spinach leaves. The generally held view that sugar phosphates transported by chloroplasts are confined to triose phosphates is not supported by these results. A physiological role for a Glc-6-P translocator in green plastids is presented with reference to the source/sink function of the leaf.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbruzzese J. L., Schmidt S., Raber M. N., Levy J. K., Castellanos A. M., Legha S. S., Krakoff I. H. Phase I trial of 1-(2'-deoxy-2'-fluoro-1-beta-D-arabinofuranosyl)-5-methyluracil (FMAU) terminated by severe neurologic toxicity. Invest New Drugs. 1989 Jul;7(2-3):195–201. doi: 10.1007/BF00170857. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basu A., Basu U., Taylor G. J. Induction of Microsomal Membrane Proteins in Roots of an Aluminum-Resistant Cultivar of Triticum aestivum L. under Conditions of Aluminum Stress. Plant Physiol. 1994 Mar;104(3):1007–1013. doi: 10.1104/pp.104.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Batz O., Maass U., Henrichs G., Scheibe R., Neuhaus H. E. Glucose- and ADPGlc-dependent starch synthesis in isolated cauliflower-bud amyloplasts. Analysis of the interaction of various potential precursors. Biochim Biophys Acta. 1994 Jul 6;1200(2):148–154. doi: 10.1016/0304-4165(94)90129-5. [DOI] [PubMed] [Google Scholar]
  5. Batz O., Scheibe R., Neuhaus H. E. Identification of the putative hexose-phosphate translocator of amyloplasts from cauliflower buds. Biochem J. 1993 Aug 15;294(Pt 1):15–17. doi: 10.1042/bj2940015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Batz O., Scheibe R., Neuhaus H. E. Transport Processes and Corresponding Changes in Metabolite Levels in Relation to Starch Synthesis in Barley (Hordeum vulgare L.) Etioplasts. Plant Physiol. 1992 Sep;100(1):184–190. doi: 10.1104/pp.100.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Caldwell C. R. Analysis of aluminum and divalent cation binding to wheat root plasma membrane proteins using terbium phosphorescence. Plant Physiol. 1989 Sep;91(1):233–241. doi: 10.1104/pp.91.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delhaize E., Ryan P. R., Randall P. J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices). Plant Physiol. 1993 Nov;103(3):695–702. doi: 10.1104/pp.103.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Entwistle G., ap Rees T. A. Lack of fructose-1,6-bisphosphatase in a range of higher plants that store starch. Biochem J. 1990 Oct 15;271(2):467–472. doi: 10.1042/bj2710467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Etherton B. Evidence for amino Acid-h co-transport in oat coleoptiles. Plant Physiol. 1978 Jun;61(6):933–937. doi: 10.1104/pp.61.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fliege R., Flügge U. I., Werdan K., Heldt H. W. Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta. 1978 May 10;502(2):232–247. doi: 10.1016/0005-2728(78)90045-2. [DOI] [PubMed] [Google Scholar]
  13. Heldt H. W., Sauer F. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta. 1971 Apr 6;234(1):83–91. doi: 10.1016/0005-2728(71)90133-2. [DOI] [PubMed] [Google Scholar]
  14. Kinraide T. B., Parker D. R. Cation amelioration of aluminum toxicity in wheat. Plant Physiol. 1987 Mar;83(3):546–551. doi: 10.1104/pp.83.3.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kinraide T. B., Ryan P. R., Kochian L. V. Interactive effects of Al, h, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 1992 Aug;99(4):1461–1468. doi: 10.1104/pp.99.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knight J. S., Gray J. C. Expression of genes encoding the tobacco chloroplast phosphate translocator is not light-regulated and is repressed by sucrose. Mol Gen Genet. 1994 Mar;242(5):586–594. doi: 10.1007/BF00285282. [DOI] [PubMed] [Google Scholar]
  17. MACLACHLAN G. A., PORTER H. K. Replacement of oxidation by light as the energy source for glucose metabolism in tobacco leaf. Proc R Soc Lond B Biol Sci. 1959 Sep 1;150:460–473. doi: 10.1098/rspb.1959.0035. [DOI] [PubMed] [Google Scholar]
  18. Miyasaka S. C., Buta J. G., Howell R. K., Foy C. D. Mechanism of aluminum tolerance in snapbeans : root exudation of citric Acid. Plant Physiol. 1991 Jul;96(3):737–743. doi: 10.1104/pp.96.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miyasaka S. C., Kochian L. V., Shaff J. E., Foy C. D. Mechanisms of Aluminum Tolerance in Wheat : An Investigation of Genotypic Differences in Rhizosphere pH, K, and H Transport, and Root-Cell Membrane Potentials. Plant Physiol. 1989 Nov;91(3):1188–1196. doi: 10.1104/pp.91.3.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Möhlmann T., Batz O., Maass U., Neuhaus H. E. Analysis of carbohydrate transport across the envelope of isolated cauliflower-bud amyloplasts. Biochem J. 1995 Apr 15;307(Pt 2):521–526. doi: 10.1042/bj3070521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neuhaus H. E., Henrichs G., Scheibe R. Characterization of Glucose-6-Phosphate Incorporation into Starch by Isolated Intact Cauliflower-Bud Plastids. Plant Physiol. 1993 Feb;101(2):573–578. doi: 10.1104/pp.101.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nichol B. E., Oliveira L. A., Glass ADM., Siddiqi M. Y. The Effects of Aluminum on the Influx of Calcium, Potassium, Ammonium, Nitrate, and Phosphate in an Aluminum-Sensitive Cultivar of Barley (Hordeum vulgare L.). Plant Physiol. 1993 Apr;101(4):1263–1266. doi: 10.1104/pp.101.4.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rumpho M. E., Edwards G. E. Characterization of 4,4'-Diisothiocyano-2,2'-disulfonic Acid Stilbene Inhibition of 3-Phosphoglycerate-Dependent O(2) Evolution in Isolated Chloroplasts : Evidence for a Common Binding Site on the C(4) Phosphate Translocator for 3-Phosphoglycerate, Phosphoenolpyruvate, and Inorganic Phosphate. Plant Physiol. 1985 Jul;78(3):537–544. doi: 10.1104/pp.78.3.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ryan P. R., Kochian L. V. Interaction between Aluminum Toxicity and Calcium Uptake at the Root Apex in Near-Isogenic Lines of Wheat (Triticum aestivum L.) Differing in Aluminum Tolerance. Plant Physiol. 1993 Jul;102(3):975–982. doi: 10.1104/pp.102.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhao X. J., Sucoff E., Stadelmann E. J. Al and Ca Alteration of Membrane Permeability of Quercus rubra Root Cortex Cells. Plant Physiol. 1987 Jan;83(1):159–162. doi: 10.1104/pp.83.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES