Abstract
Cd from roots of maize was partitioned in seedlings exposed to 3 microM CdSO4 for 1 to 7 d. Most of the root Cd (92-94%) was buffer soluble and provided the classical metal-induced cysteine-rich, high-molecular-weight Cd-binding complex. This complex, however, bound only part of the Cd within the roots, from 19% after 1 d of exposure to 59% by d 7. Three families of peptides formed the Cd-binding complex: (gamma-glutamic acid-cysteine)n-glycine [(gamma-Glu-Cys)n-Gly], or phytochelatins, (gamma-Glu-Cys)n, and (gamma-Glu-Cys)n-Glu. The monothiols gamma-Glu-Cys-Gly (glutathione), gamma-Glu-Cys, and gamma-Glu-Cys-Glu were absent from the complex. The n2 oligomers of any peptide were the least concentrated, whereas the n3 and n4 oligomers increased in the complex with exposure to Cd. By d 7, 75% of (gamma-Glu-Cys)4-Gly, 80% of (gamma-Glu-Cys)4, and 73% of (gamma-Glu-Cys)3-Glu were complexed with Cd. The peptide thiol:Cd molar ratio for the complexes was 1.01 +/- 0.07, as if the minimal amount of thiol was used to bind Cd. Acid-labile sulfide occurred in the complexes from d 1 onward at the low S2-;Cd molar ratio of 0.18 +/- 0.02.
Full Text
The Full Text of this article is available as a PDF (842.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- De Knecht J. A., Van Dillen M., Koevoets PLM., Schat H., Verkleij JAC., Ernst WHO. Phytochelatins in Cadmium-Sensitive and Cadmium-Tolerant Silene vulgaris (Chain Length Distribution and Sulfide Incorporation). Plant Physiol. 1994 Jan;104(1):255–261. doi: 10.1104/pp.104.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grill E., Winnacker E. L., Zenk M. H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science. 1985 Nov 8;230(4726):674–676. doi: 10.1126/science.230.4726.674. [DOI] [PubMed] [Google Scholar]
- Gupta S. C., Goldsbrough P. B. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol. 1991 Sep;97(1):306–312. doi: 10.1104/pp.97.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howe G., Merchant S. Heavy Metal-Activated Synthesis of Peptides in Chlamydomonas reinhardtii. Plant Physiol. 1992 Jan;98(1):127–136. doi: 10.1104/pp.98.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson P. J., Roth E. J., McClure P. R., Naranjo C. M. Selection, Isolation, and Characterization of Cadmium-Resistant Datura innoxia Suspension Cultures. Plant Physiol. 1984 Aug;75(4):914–918. doi: 10.1104/pp.75.4.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klapheck S., Fliegner W., Zimmer I. Hydroxymethyl-phytochelatins [(gamma-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Plant Physiol. 1994 Apr;104(4):1325–1332. doi: 10.1104/pp.104.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lue-Kim H., Rauser W. E. Partial characterization of cadmium-binding protein from roots of tomato. Plant Physiol. 1986 Jul;81(3):896–900. doi: 10.1104/pp.81.3.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehra R. K., Winge D. R. Cu(I) binding to the Schizosaccharomyces pombe gamma-glutamyl peptides varying in chain lengths. Arch Biochem Biophys. 1988 Sep;265(2):381–389. doi: 10.1016/0003-9861(88)90141-5. [DOI] [PubMed] [Google Scholar]
- Meuwly P., Rauser W. E. Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium : adaptation and developmental cost. Plant Physiol. 1992 May;99(1):8–15. doi: 10.1104/pp.99.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meuwly P., Thibault P., Rauser W. E. gamma-Glutamylcysteinylglutamic acid--a new homologue of glutathione in maize seedlings exposed to cadmium. FEBS Lett. 1993 Dec 28;336(3):472–476. doi: 10.1016/0014-5793(93)80858-r. [DOI] [PubMed] [Google Scholar]
- Meuwly P., Thibault P., Schwan A. L., Rauser W. E. Three families of thiol peptides are induced by cadmium in maize. Plant J. 1995 Mar;7(3):391–400. doi: 10.1046/j.1365-313x.1995.7030391.x. [DOI] [PubMed] [Google Scholar]
- Murasugi A., Wada C., Hayashi Y. Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast. J Biochem. 1983 Feb;93(2):661–664. doi: 10.1093/oxfordjournals.jbchem.a134222. [DOI] [PubMed] [Google Scholar]
- Mutoh N., Hayashi Y. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun. 1988 Feb 29;151(1):32–39. doi: 10.1016/0006-291x(88)90555-4. [DOI] [PubMed] [Google Scholar]
- Ortiz D. F., Ruscitti T., McCue K. F., Ow D. W. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem. 1995 Mar 3;270(9):4721–4728. doi: 10.1074/jbc.270.9.4721. [DOI] [PubMed] [Google Scholar]
- Rauser W. E. Cadmium-binding peptides from plants. Methods Enzymol. 1991;205:319–333. doi: 10.1016/0076-6879(91)05114-b. [DOI] [PubMed] [Google Scholar]
- Rauser W. E. Compartmental efflux analysis and removal of extracellular cadmium from roots. Plant Physiol. 1987 Sep;85(1):62–65. doi: 10.1104/pp.85.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
- Reese R. N., Mehra R. K., Tarbet E. B., Winge D. R. Studies on the gamma-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J Biol Chem. 1988 Mar 25;263(9):4186–4192. [PubMed] [Google Scholar]
- Reese R. N., Wagner G. J. Properties of tobacco (Nicotiana tabacum) cadmium-binding peptide(s). Unique non-metallothionein cadmium ligands. Biochem J. 1987 Feb 1;241(3):641–647. doi: 10.1042/bj2410641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reese R. N., White C. A., Winge D. R. Cadmium-Sulfide Crystallites in Cd-(gammaEC)(n)G Peptide Complexes from Tomato. Plant Physiol. 1992 Jan;98(1):225–229. doi: 10.1104/pp.98.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salt D. E., Rauser W. E. MgATP-Dependent Transport of Phytochelatins Across the Tonoplast of Oat Roots. Plant Physiol. 1995 Apr;107(4):1293–1301. doi: 10.1104/pp.107.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speiser D. M., Abrahamson S. L., Banuelos G., Ow D. W. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex. Plant Physiol. 1992 Jul;99(3):817–821. doi: 10.1104/pp.99.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vögeli-Lange R., Wagner G. J. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves : implication of a transport function for cadmium-binding peptides. Plant Physiol. 1990 Apr;92(4):1086–1093. doi: 10.1104/pp.92.4.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]