Abstract
The tonoplast H+-ATPase of Acer pseudoplatanus has been purified from isolated vacuoles. After solubilization, the purification procedure included size-exclusion and ion-exchange chromatography. The H+-ATPase consists of at least eight subunits, of 95, 66, 56, 54, 40, 38, 31, and 16 kD, that did not cross-react with polyclonal antibodies raised to the plasmalemma ATPase of Arabidopsis thaliana. The 66-kD polypeptide cross-reacted with monoclonal antibodies raised to the 70-kD subunit of the vacuolar H+-ATPase of oat roots. The functional molecular size of the tonoplast H+-ATPase, analyzed in situ by radiation inactivation, was found to be around 400 kD. The 66-kD subunit of the tonoplast H+-ATPase was rapidly phosphorylated by [[gamma]-32P]ATP in vitro. The complete loss of radio-activity in the 66-kD subunit after a short pulse-chase experiment with unlabeled ATP reflected a rapid turnover, which characterizes a phosphorylated intermediate. Phosphoenzyme formed from ATP is an acylphosphate-type compound as shown by its sensitivity to hydroxylamine and alkaline pH. These results lead us to suggest that the tonoplast H+-ATPase of A. pseudoplatanus is a vacuolar-type ATPase that could operate with a plasmalemma-type ATPase catalytic mechanism.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amory A., Foury F., Goffeau A. The purified plasma membrane ATPase of the yeast Schizosaccharomyces pombe forms a phosphorylated intermediate. J Biol Chem. 1980 Oct 10;255(19):9353–9357. [PubMed] [Google Scholar]
- Arai H., Terres G., Pink S., Forgac M. Topography and subunit stoichiometry of the coated vesicle proton pump. J Biol Chem. 1988 Jun 25;263(18):8796–8802. [PubMed] [Google Scholar]
- Beltrán C., Nelson N. The membrane sector of vacuolar H(+)-ATPase by itself is impermeable to protons. Acta Physiol Scand Suppl. 1992;607:41–47. [PubMed] [Google Scholar]
- Bowman B. J., Dschida W. J., Harris T., Bowman E. J. The vacuolar ATPase of Neurospora crassa contains an F1-like structure. J Biol Chem. 1989 Sep 15;264(26):15606–15612. [PubMed] [Google Scholar]
- Chanson A., Pilet P. E. Target Molecular Size and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Analysis of the ATP-and Pyrophosphate-Dependent Proton Pumps from Maize Root Tonoplast. Plant Physiol. 1989 Jul;90(3):934–938. doi: 10.1104/pp.90.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forgac M. V-type ATPases. Introduction. J Bioenerg Biomembr. 1992 Aug;24(4):339–340. doi: 10.1007/BF00762526. [DOI] [PubMed] [Google Scholar]
- Galloway C. J., Dean G. E., Marsh M., Rudnick G., Mellman I. Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3334–3338. doi: 10.1073/pnas.80.11.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman E. J., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6661–6665. doi: 10.1073/pnas.86.17.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992 Nov;17(11):463–468. doi: 10.1016/0968-0004(92)90489-v. [DOI] [PubMed] [Google Scholar]
- Kaestner K. H., Randall S. K., Sze H. N,N'-dicyclohexylcarbodiimide-binding proteolipid of the vacuolar H+-ATPase from oat roots. J Biol Chem. 1988 Jan 25;263(3):1282–1287. [PubMed] [Google Scholar]
- Kepner G. R., Macey R. I. Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim Biophys Acta. 1968 Sep 17;163(2):188–203. doi: 10.1016/0005-2736(68)90097-7. [DOI] [PubMed] [Google Scholar]
- Kobayashi K., Sogame Y., Hara H., Hayashi K. Mechanism of glutathione S-conjugate transport in canalicular and basolateral rat liver plasma membranes. J Biol Chem. 1990 May 15;265(14):7737–7741. [PubMed] [Google Scholar]
- LAMPORT D. T. CELL SUSPENSION CULTURES OF HIGHER PLANTS: ISOLATION AND GROWTH ENERGETICS. Exp Cell Res. 1964 Jan;33:195–206. doi: 10.1016/s0014-4827(64)81026-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lübben M., Lünsdorf H., Schäfer G. The plasma membrane ATPase of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Purification and immunological relationships to F1-ATPases. Eur J Biochem. 1987 Sep 1;167(2):211–219. doi: 10.1111/j.1432-1033.1987.tb13325.x. [DOI] [PubMed] [Google Scholar]
- Mandala S., Taiz L. Characterization of the subunit structure of the maize tonoplast ATPase. Immunological and inhibitor binding studies. J Biol Chem. 1986 Sep 25;261(27):12850–12855. [PubMed] [Google Scholar]
- Mandala S., Taiz L. Proton transport in isolated vacuoles from corn coleoptiles. Plant Physiol. 1985 May;78(1):104–109. doi: 10.1104/pp.78.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manolson M. F., Rea P. A., Poole R. J. Identification of 3-O-(4-benzoyl)benzoyladenosine 5'-triphosphate- and N,N'-dicyclohexylcarbodiimide-binding subunits of a higher plant H+-translocating tonoplast ATPase. J Biol Chem. 1985 Oct 5;260(22):12273–12279. [PubMed] [Google Scholar]
- McIntyre J. O., Churchill P. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is a reliable internal standard for radiation-inactivation studies of membranes in the frozen state. Anal Biochem. 1985 Jun;147(2):468–477. doi: 10.1016/0003-2697(85)90300-8. [DOI] [PubMed] [Google Scholar]
- Medda P., Hasselbach W. Dependence on membrane lipids of the effect of vanadate on calcium and ATP binding to sarcoplasmic reticulum ATPase. Z Naturforsch C. 1984 Nov-Dec;39(11-12):1137–1140. doi: 10.1515/znc-1984-11-1224. [DOI] [PubMed] [Google Scholar]
- Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
- Montrichard F., Pugin A., Gaudemer Y. Inhibition of the vacuolar ATPase of Acer pseudoplatanus cells by vanadate. Biochimie. 1989 Jul;71(7):813–817. doi: 10.1016/0300-9084(89)90044-8. [DOI] [PubMed] [Google Scholar]
- Moriyama Y., Nelson N. Cold inactivation of vacuolar proton-ATPases. J Biol Chem. 1989 Feb 25;264(6):3577–3582. [PubMed] [Google Scholar]
- Moriyama Y., Nelson N. H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures. J Biol Chem. 1989 Nov 5;264(31):18445–18450. [PubMed] [Google Scholar]
- Moriyama Y., Nelson N. Purification and properties of a vanadate- and N-ethylmaleimide-sensitive ATPase from chromaffin granule membranes. J Biol Chem. 1988 Jun 15;263(17):8521–8527. [PubMed] [Google Scholar]
- Mukohata Y., Ihara K., Yoshida M., Konishi J., Sugiyama Y., Yoshida M. The halobacterial H+-translocating ATP synthase relates to the eukaryotic anion-sensitive H+-ATPase. Arch Biochem Biophys. 1987 Dec;259(2):650–653. doi: 10.1016/0003-9861(87)90532-7. [DOI] [PubMed] [Google Scholar]
- Nelson N., Taiz L. The evolution of H+-ATPases. Trends Biochem Sci. 1989 Mar;14(3):113–116. doi: 10.1016/0968-0004(89)90134-5. [DOI] [PubMed] [Google Scholar]
- Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parry R. V., Turner J. C., Rea P. A. High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits. Revised subunit composition. J Biol Chem. 1989 Nov 25;264(33):20025–20032. [PubMed] [Google Scholar]
- Sarafian V., Potier M., Poole R. J. Radiation-inactivation analysis of vacuolar H(+)-ATPase and H(+)-pyrophosphatase from Beta vulgaris L. Functional sizes for substrate hydrolysis and for H+ transport. Biochem J. 1992 Apr 15;283(Pt 2):493–497. doi: 10.1042/bj2830493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherwood J. B., Shouval D. Continuous production of erythropoietin by an established human renal carcinoma cell line: development of the cell line. Proc Natl Acad Sci U S A. 1986 Jan;83(1):165–169. doi: 10.1073/pnas.83.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uchida E., Ohsumi Y., Anraku Y. Characterization and function of catalytic subunit alpha of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. A study with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. J Biol Chem. 1988 Jan 5;263(1):45–51. [PubMed] [Google Scholar]
- Wang M. Y., Lin Y. H., Chou W. M., Chung T. P., Pan R. L. Purification and characterization of tonoplast ATPase from etiolated mung bean seedlings. Plant Physiol. 1989 Jun;90(2):475–481. doi: 10.1104/pp.90.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimniak L., Dittrich P., Gogarten J. P., Kibak H., Taiz L. The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of F0F1-ATPases. J Biol Chem. 1988 Jul 5;263(19):9102–9112. [PubMed] [Google Scholar]