Abstract
Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a single threonine as residue 28 instead of the serine28-alanine29 sequence, present in all other known plant and animal H3 histones.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arents G., Burlingame R. W., Wang B. C., Love W. E., Moudrianakis E. N. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10148–10152. doi: 10.1073/pnas.88.22.10148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradbury E. M. Reversible histone modifications and the chromosome cell cycle. Bioessays. 1992 Jan;14(1):9–16. doi: 10.1002/bies.950140103. [DOI] [PubMed] [Google Scholar]
- Chicoine L. G., Schulman I. G., Richman R., Cook R. G., Allis C. D. Nonrandom utilization of acetylation sites in histones isolated from Tetrahymena. Evidence for functionally distinct H4 acetylation sites. J Biol Chem. 1986 Jan 25;261(3):1071–1076. [PubMed] [Google Scholar]
- Clarke D. J., O'Neill L. P., Turner B. M. Selective use of H4 acetylation sites in the yeast Saccharomyces cerevisiae. Biochem J. 1993 Sep 1;294(Pt 2):557–561. doi: 10.1042/bj2940557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davie J. R., Murphy L. C. Inhibition of transcription selectively reduces the level of ubiquitinated histone H2B in chromatin. Biochem Biophys Res Commun. 1994 Aug 30;203(1):344–350. doi: 10.1006/bbrc.1994.2188. [DOI] [PubMed] [Google Scholar]
- Delcuve G. P., Davie J. R. Western blotting and immunochemical detection of histones electrophoretically resolved on acid-urea-triton- and sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1992 Feb 1;200(2):339–341. doi: 10.1016/0003-2697(92)90475-m. [DOI] [PubMed] [Google Scholar]
- Durrin L. K., Mann R. K., Kayne P. S., Grunstein M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell. 1991 Jun 14;65(6):1023–1031. doi: 10.1016/0092-8674(91)90554-c. [DOI] [PubMed] [Google Scholar]
- Franklin S. G., Zweidler A. Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature. 1977 Mar 17;266(5599):273–275. doi: 10.1038/266273a0. [DOI] [PubMed] [Google Scholar]
- Grunstein M. Histone function in transcription. Annu Rev Cell Biol. 1990;6:643–678. doi: 10.1146/annurev.cb.06.110190.003235. [DOI] [PubMed] [Google Scholar]
- Keller L. R., Schloss J. A., Silflow C. D., Rosenbaum J. L. Transcription of alpha- and beta-tubulin genes in vitro in isolated Chlamydomonas reinhardi nuclei. J Cell Biol. 1984 Mar;98(3):1138–1143. doi: 10.1083/jcb.98.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindauer A., Müller K., Schmitt R. Two histone H1-encoding genes of the green alga Volvox carteri with features intermediate between plant and animal genes. Gene. 1993 Jul 15;129(1):59–68. doi: 10.1016/0378-1119(93)90696-z. [DOI] [PubMed] [Google Scholar]
- Megee P. C., Morgan B. A., Mittman B. A., Smith M. M. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science. 1990 Feb 16;247(4944):841–845. doi: 10.1126/science.2106160. [DOI] [PubMed] [Google Scholar]
- Mende L. M., Waterborg J. H., Mueller R. D., Matthews H. R. Isolation, identification, and characterization of histones from plasmodia of the true slime mold Physarum polycephalum using extraction with guanidine hydrochloride. Biochemistry. 1983 Jan 4;22(1):38–51. doi: 10.1021/bi00270a006. [DOI] [PubMed] [Google Scholar]
- Munks R. J., Moore J., O'Neill L. P., Turner B. M. Histone H4 acetylation in Drosophila. Frequency of acetylation at different sites defined by immunolabelling with site-specific antibodies. FEBS Lett. 1991 Jun 24;284(2):245–248. doi: 10.1016/0014-5793(91)80695-y. [DOI] [PubMed] [Google Scholar]
- Müller K., Lindauer A., Brüderlein M., Schmitt R. Organization and transcription of Volvox histone-encoding genes: similarities between algal and animal genes. Gene. 1990 Sep 14;93(2):167–175. doi: 10.1016/0378-1119(90)90221-c. [DOI] [PubMed] [Google Scholar]
- Nickel B. E., Allis C. D., Davie J. R. Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry. 1989 Feb 7;28(3):958–963. doi: 10.1021/bi00429a006. [DOI] [PubMed] [Google Scholar]
- Osley M. A. The regulation of histone synthesis in the cell cycle. Annu Rev Biochem. 1991;60:827–861. doi: 10.1146/annurev.bi.60.070191.004143. [DOI] [PubMed] [Google Scholar]
- Ruiz-Carrillo A., Wangh L. J., Allfrey V. G. Processing of newly synthesized histone molecules. Science. 1975 Oct 10;190(4210):117–128. doi: 10.1126/science.1166303. [DOI] [PubMed] [Google Scholar]
- Shimogawara K., Muto S. Purification of Chlamydomonas 28-kDa ubiquitinated protein and its identification as ubiquitinated histone H2B. Arch Biochem Biophys. 1992 Apr;294(1):193–199. doi: 10.1016/0003-9861(92)90157-r. [DOI] [PubMed] [Google Scholar]
- Waterborg J. H. Dynamic methylation of alfalfa histone H3. J Biol Chem. 1993 Mar 5;268(7):4918–4921. [PubMed] [Google Scholar]
- Waterborg J. H., Fried S. R., Matthews H. R. Acetylation and methylation sites in histone H4 from Physarum polycephalum. Eur J Biochem. 1983 Nov 2;136(2):245–252. doi: 10.1111/j.1432-1033.1983.tb07734.x. [DOI] [PubMed] [Google Scholar]
- Waterborg J. H., Harrington R. E., Winicov I. Differential Histone Acetylation in Alfalfa (Medicago sativa) Due to Growth in NaCl : Responses in Salt Stressed and Salt Tolerant Callus Cultures. Plant Physiol. 1989 May;90(1):237–245. doi: 10.1104/pp.90.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterborg J. H. Identification of five sites of acetylation in alfalfa histone H4. Biochemistry. 1992 Jul 14;31(27):6211–6219. doi: 10.1021/bi00142a006. [DOI] [PubMed] [Google Scholar]
- Waterborg J. H. Multiplicity of histone h3 variants in wheat, barley, rice, and maize. Plant Physiol. 1991 Jun;96(2):453–458. doi: 10.1104/pp.96.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterborg J. H., Winicov I., Harrington R. E. Histone variants and acetylated species from the alfalfa plant Medicago sativa. Arch Biochem Biophys. 1987 Jul;256(1):167–178. doi: 10.1016/0003-9861(87)90435-8. [DOI] [PubMed] [Google Scholar]
- Wu R. S., Panusz H. T., Hatch C. L., Bonner W. M. Histones and their modifications. CRC Crit Rev Biochem. 1986;20(2):201–263. doi: 10.3109/10409238609083735. [DOI] [PubMed] [Google Scholar]