Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Oct;109(2):421–432. doi: 10.1104/pp.109.2.421

Amelioration of Ozone-Induced Oxidative Damage in Wheat Plants Grown under High Carbon Dioxide (Role of Antioxidant Enzymes).

M V Rao 1, B A Hale 1, D P Ormrod 1
PMCID: PMC157604  PMID: 12228603

Abstract

O3-induced changes in growth, oxidative damage to protein, and specific activities of certain antioxidant enzymes were investigated in wheat plants (Triticum aestivum L. cv Roblin) grown under ambient or high CO2. High CO2 enhanced shoot biomass of wheat plants, whereas O3 exposure decreased shoot biomass. The shoot biomass was relatively unaffected in plants grown under a combination of high CO2 and O3. O3 exposure under ambient CO2 decreased photosynthetic pigments, soluble proteins, and ribulose-1,5-bisphosphate carboxylase/oxygenase protein and enhanced oxidative damage to proteins, but these effects were not observed in plants exposed to O3 under high CO2. O3 exposure initially enhanced the specific activities of superoxide dismutase, peroxidase, glutathione reductase, and ascorbate peroxidase irrespective of growth in ambient or high CO2. However, the specific activities decreased in plants with prolonged exposure to O3 under ambient CO2 but not in plants exposed to O3 under high CO2. Native gels revealed preferential changes in the isoform composition of superoxide dismutase, peroxidases, and ascorbate peroxidase of plants grown under a combination of high CO2 and O3. Furthermore, growth under high CO2 and O3 led to the synthesis of one new isoform of glutathione reductase. This could explain why plants grown under a combination of high CO2 and O3 are capable of resisting O3-induced damage to growth and proteins compared to plants exposed to O3 under ambient CO2.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol. 1995 Apr;107(4):1049–1054. doi: 10.1104/pp.107.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bender J., Weigel H. J., Wegner U., Jäger H. J. Response of cellular antioxidants to ozone in wheat flag leaves at different stages of plant development. Environ Pollut. 1994;84(1):15–21. doi: 10.1016/0269-7491(94)90065-5. [DOI] [PubMed] [Google Scholar]
  3. Castillo F. J., Penel C., Greppin H. Peroxidase Release Induced by Ozone in Sedum album Leaves: Involvement of Ca. Plant Physiol. 1984 Apr;74(4):846–851. doi: 10.1104/pp.74.4.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grimes H. D., Perkins K. K., Boss W. F. Ozone Degrades into Hydroxyl Radical under Physiological Conditions : A Spin Trapping Study. Plant Physiol. 1983 Aug;72(4):1016–1020. doi: 10.1104/pp.72.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gupta A. S., Heinen J. L., Holaday A. S., Burke J. J., Allen R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629–1633. doi: 10.1073/pnas.90.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gupta A. S., Webb R. P., Holaday A. S., Allen R. D. Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants). Plant Physiol. 1993 Dec;103(4):1067–1073. doi: 10.1104/pp.103.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harbinson J., Genty B., Foyer C. H. Relationship between Photosynthetic Electron Transport and Stromal Enzyme Activity in Pea Leaves : Toward an Understanding of the Nature of Photosynthetic Control. Plant Physiol. 1990 Oct;94(2):545–553. doi: 10.1104/pp.94.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hérouart D., Van Montagu M., Inzé D. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3108–3112. doi: 10.1073/pnas.90.7.3108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krupa S. V., Kickert R. N. The Greenhouse effect: impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation. Environ Pollut. 1989;61(4):263–393. doi: 10.1016/0269-7491(89)90166-8. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
  12. Madamanchi N. R., Anderson J. V., Alscher R. G., Cramer C. L., Hess J. L. Purification of Multiple Forms of Glutathione Reductase from Pea (Pisum sativum L.) Seedlings and Enzyme Levels in Ozone-Fumigated Pea Leaves. Plant Physiol. 1992 Sep;100(1):138–145. doi: 10.1104/pp.100.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Misra H. P., Fridovich I. Superoxide dismutase and peroxidase: a positive activity stain applicable to polyacrylamide gel electropherograms. Arch Biochem Biophys. 1977 Oct;183(2):511–515. doi: 10.1016/0003-9861(77)90386-1. [DOI] [PubMed] [Google Scholar]
  14. Mittler R., Zilinskas B. A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem. 1993 Aug 1;212(2):540–546. doi: 10.1006/abio.1993.1366. [DOI] [PubMed] [Google Scholar]
  15. Pacifici R. E., Davies K. J. Protein degradation as an index of oxidative stress. Methods Enzymol. 1990;186:485–502. doi: 10.1016/0076-6879(90)86143-j. [DOI] [PubMed] [Google Scholar]
  16. Spychalla J. P., Desborough S. L. Superoxide Dismutase, Catalase, and alpha-Tocopherol Content of Stored Potato Tubers. Plant Physiol. 1990 Nov;94(3):1214–1218. doi: 10.1104/pp.94.3.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stadtman E. R., Oliver C. N. Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem. 1991 Feb 5;266(4):2005–2008. [PubMed] [Google Scholar]
  18. Yelle S., Beeson R. C., Trudel M. J., Gosselin A. Acclimation of Two Tomato Species to High Atmospheric CO(2): I. Sugar and Starch Concentrations. Plant Physiol. 1989 Aug;90(4):1465–1472. doi: 10.1104/pp.90.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ziska L. H., Teramura A. H. CO(2) Enhancement of Growth and Photosynthesis in Rice (Oryza sativa) : Modification by Increased Ultraviolet-B Radiation. Plant Physiol. 1992 Jun;99(2):473–481. doi: 10.1104/pp.99.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES