Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Oct;109(2):445–455. doi: 10.1104/pp.109.2.445

A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins.

B P Cammue 1, K Thevissen 1, M Hendriks 1, K Eggermont 1, I J Goderis 1, P Proost 1, J Van Damme 1, R W Osborn 1, F Guerbette 1, J C Kader 1, et al.
PMCID: PMC157606  PMID: 7480341

Abstract

An antimicrobial protein of about 10 kD, called Ace-AMP1, was isolated from onion (Allium cepa L.) seeds. Based on the near-complete amino acid sequence of this protein, oligonucleotides were designed for polymerase chain reaction-based cloning of the corresponding cDNA. The mature protein is homologous to plant nonspecific lipid transfer proteins (nsLTPs), but it shares only 76% of the residues that are conserved among all known plant nsLTPs and is unusually rich in arginine. Ace-AMP1 inhibits all 12 tested plant pathogenic fungi at concentrations below 10 micrograms mL-1. Its antifungal activity is either not at all or is weakly affected by the presence of different cations at concentrations approximating physiological ionic strength conditions. Ace-AMP1 is also active on two Gram-positive bacteria but is apparently not toxic for Gram-negative bacteria and cultured human cells. In contrast to nsLTPs such as those isolated from radish or maize seeds, Ace-AMP1 was unable to transfer phospholipids from liposomes to mitochondria. On the other hand, lipid transfer proteins from wheat and maize seeds showed little or no antimicrobial activity, whereas the radish lipid transfer protein displayed antifungal activity only in media with low cation concentrations. The relevance of these findings with regard to the function of nsLTPs is discussed.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arondel V., Kader J. C. Lipid transfer in plants. Experientia. 1990 Jun 15;46(6):579–585. doi: 10.1007/BF01939696. [DOI] [PubMed] [Google Scholar]
  2. Bednarek S. Y., Raikhel N. V. The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell. 1991 Nov;3(11):1195–1206. doi: 10.1105/tpc.3.11.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernhard W. R., Thoma S., Botella J., Somerville C. R. Isolation of a cDNA Clone for Spinach Lipid Transfer Protein and Evidence that the Protein Is Synthesized by the Secretory Pathway. Plant Physiol. 1991 Jan;95(1):164–170. doi: 10.1104/pp.95.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broekaert W. F., Mariën W., Terras F. R., De Bolle M. F., Proost P., Van Damme J., Dillen L., Claeys M., Rees S. B., Vanderleyden J. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry. 1992 May 5;31(17):4308–4314. doi: 10.1021/bi00132a023. [DOI] [PubMed] [Google Scholar]
  5. Cammue B. P., De Bolle M. F., Terras F. R., Proost P., Van Damme J., Rees S. B., Vanderleyden J., Broekaert W. F. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem. 1992 Feb 5;267(4):2228–2233. [PubMed] [Google Scholar]
  6. Delort J., Dumas J. B., Darmon M. C., Mallet J. An efficient strategy for cloning 5' extremities of rare transcripts permits isolation of multiple 5'-untranslated regions of rat tryptophan hydroxylase mRNA. Nucleic Acids Res. 1989 Aug 25;17(16):6439–6448. doi: 10.1093/nar/17.16.6439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duvick J. P., Rood T., Rao A. G., Marshak D. R. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem. 1992 Sep 15;267(26):18814–18820. [PubMed] [Google Scholar]
  8. Fernandez de Caleya R., Gonzalez-Pascual B., García-Olmedo F., Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol. 1972 May;23(5):998–1000. doi: 10.1128/am.23.5.998-1000.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fleming A. J., Mandel T., Hofmann S., Sterk P., de Vries S. C., Kuhlemeier C. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J. 1992 Nov;2(6):855–862. [PubMed] [Google Scholar]
  10. Grosbois M., Guerbette F., Kader J. C. Changes in Level and Activity of Phospholipid Transfer Protein during Maturation and Germination of Maize Seeds. Plant Physiol. 1989 Aug;90(4):1560–1564. doi: 10.1104/pp.90.4.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huynh Q. K., Hironaka C. M., Levine E. B., Smith C. E., Borgmeyer J. R., Shah D. M. Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. J Biol Chem. 1992 Apr 5;267(10):6635–6640. [PubMed] [Google Scholar]
  12. Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leah R., Tommerup H., Svendsen I., Mundy J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991 Jan 25;266(3):1564–1573. [PubMed] [Google Scholar]
  14. Masuta C., Furuno M., Tanaka H., Yamada M., Koiwai A. Molecular cloning of a cDNA clone for tobacco lipid transfer protein and expression of the functional protein in Escherichia coli. FEBS Lett. 1992 Oct 19;311(2):119–123. doi: 10.1016/0014-5793(92)81381-u. [DOI] [PubMed] [Google Scholar]
  15. Meijer E. A., de Vries S. C., Sterk P., Gadella D. W., Jr, Wirtz K. W., Hendriks T. Characterization of the non-specific lipid transfer protein EP2 from carrot (Daucus carota L.). Mol Cell Biochem. 1993 Jun 9;123(1-2):159–166. doi: 10.1007/BF01076488. [DOI] [PubMed] [Google Scholar]
  16. Molina A., García-Olmedo F. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J. 1993 Dec;4(6):983–991. doi: 10.1046/j.1365-313x.1993.04060983.x. [DOI] [PubMed] [Google Scholar]
  17. Nakamura K., Matsuoka K. Protein targeting to the vacuole in plant cells. Plant Physiol. 1993 Jan;101(1):1–5. doi: 10.1104/pp.101.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roberts W. K., Selitrennikoff C. P. Isolation and partial characterization of two antifungal proteins from barley. Biochim Biophys Acta. 1986 Feb 19;880(2-3):161–170. doi: 10.1016/0304-4165(86)90076-0. [DOI] [PubMed] [Google Scholar]
  19. Segura A., Moreno M., García-Olmedo F. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett. 1993 Oct 18;332(3):243–246. doi: 10.1016/0014-5793(93)80641-7. [DOI] [PubMed] [Google Scholar]
  20. Simorre J. P., Caille A., Marion D., Marion D., Ptak M. Two- and three-dimensional 1H NMR studies of a wheat phospholipid transfer protein: sequential resonance assignments and secondary structure. Biochemistry. 1991 Dec 10;30(49):11600–11608. doi: 10.1021/bi00113a016. [DOI] [PubMed] [Google Scholar]
  21. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  22. Sterk P., Booij H., Schellekens G. A., Van Kammen A., De Vries S. C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell. 1991 Sep;3(9):907–921. doi: 10.1105/tpc.3.9.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takishima K., Watanabe S., Yamada M., Suga T., Mamiya G. Amino acid sequences of two nonspecific lipid-transfer proteins from germinated castor bean. Eur J Biochem. 1988 Nov 1;177(2):241–249. doi: 10.1111/j.1432-1033.1988.tb14368.x. [DOI] [PubMed] [Google Scholar]
  24. Tchang F., This P., Stiefel V., Arondel V., Morch M. D., Pages M., Puigdomenech P., Grellet F., Delseny M., Bouillon P. Phospholipid transfer protein: full-length cDNA and amino acid sequence in maize. Amino acid sequence homologies between plant phospholipid transfer proteins. J Biol Chem. 1988 Nov 15;263(32):16849–16855. [PubMed] [Google Scholar]
  25. Terras F. R., Goderis I. J., Van Leuven F., Vanderleyden J., Cammue B. P., Broekaert W. F. In Vitro Antifungal Activity of a Radish (Raphanus sativus L.) Seed Protein Homologous to Nonspecific Lipid Transfer Proteins. Plant Physiol. 1992 Oct;100(2):1055–1058. doi: 10.1104/pp.100.2.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Terras F. R., Schoofs H. M., De Bolle M. F., Van Leuven F., Rees S. B., Vanderleyden J., Cammue B. P., Broekaert W. F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem. 1992 Aug 5;267(22):15301–15309. [PubMed] [Google Scholar]
  27. Terras F. R., Torrekens S., Van Leuven F., Osborn R. W., Vanderleyden J., Cammue B. P., Broekaert W. F. A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett. 1993 Feb 1;316(3):233–240. doi: 10.1016/0014-5793(93)81299-f. [DOI] [PubMed] [Google Scholar]
  28. Tessier D. C., Brousseau R., Vernet T. Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal Biochem. 1986 Oct;158(1):171–178. doi: 10.1016/0003-2697(86)90606-8. [DOI] [PubMed] [Google Scholar]
  29. Thoma S., Hecht U., Kippers A., Botella J., De Vries S., Somerville C. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol. 1994 May;105(1):35–45. doi: 10.1104/pp.105.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thoma S., Kaneko Y., Somerville C. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 1993 Mar;3(3):427–436. doi: 10.1046/j.1365-313x.1993.t01-25-00999.x. [DOI] [PubMed] [Google Scholar]
  31. Torres-Schumann S., Godoy J. A., Pintor-Toro J. A. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol. 1992 Feb;18(4):749–757. doi: 10.1007/BF00020016. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES