Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Oct;109(2):471–479. doi: 10.1104/pp.109.2.471

Blue-Light-Regulated Expression of Genes for Two Early Steps of Chlorophyll Biosynthesis in Chlamydomonas reinhardtii.

G L Matters 1, S I Beale 1
PMCID: PMC157609  PMID: 12228605

Abstract

In light:dark-synchronized cultures of Chlamydomonas reinhardtii, the genes encoding the enzymes for two early steps of chlorophyll biosynthesis, glutamate-1-semialdehyde aminotransferase (gsa) and [delta]-aminolevulinic acid dehydratase (alad), are expressed at high levels early in the light phase, just prior to a rapid burst of chlorophyll synthesis. Induction of gsa mRNA in synchronized cells is totally dependent on light, whereas induction of alad mRNA occurs to approximately one-half the light-induced level even in cells kept in the dark during the light phase and appears to be dependent on the cell cycle or a circadian rhythm. gsa mRNA and alad mRNA accumulation is induced by light that was passed through blue (400-480 nm) or green (490-590 nm) filters but not by light that was passed through orange (>560 nm) or red (>610 nm) filters, indicating the participation of a blue-light photoreceptor system rather than a protochlorophyllide- or rhodopsin-based photoreceptor. Light induction of gsa mRNA accumulation is absent in a carotenoid-deficient mutant, which suggests that a carotenoid-containing blue-light photoreceptor is involved. In contrast, pretreatment of wild-type cells with either of two flavin antagonists, phenylacetic acid and KI, does not prevent the light induction. In the later part of the light phase, the gsa mRNA level decreases more rapidly than that of alad mRNA. Turnover studies indicate that the half-life of alad mRNA is twice that of gsa mRNA. This difference in mRNA stability partially accounts for the more rapid decline in gsa mRNA levels after the peak of light induction is reached. Thus, differential blue-light induction and stability of mRNAs regulates the expression of these two chlorophyll biosynthetic genes.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  2. Baker E. J., Liggit P. Accelerated poly(A) loss and mRNA stabilization are independent effects of protein synthesis inhibition on alpha-tubulin mRNA in Chlamydomonas. Nucleic Acids Res. 1993 May 11;21(9):2237–2246. doi: 10.1093/nar/21.9.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beator J., Kloppstech K. The Circadian Oscillator Coordinates the Synthesis of Apoproteins and Their Pigments during Chloroplast Development. Plant Physiol. 1993 Sep;103(1):191–196. doi: 10.1104/pp.103.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dewdney J., Conley T. R., Shih M. C., Goodman H. M. Effects of blue and red light on expression of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana. Plant Physiol. 1993 Dec;103(4):1115–1121. doi: 10.1104/pp.103.4.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Francis G. W., Strand L. P., Lien T., Knutsen G. Variations in the carotenoid content of Chlamydomonas reinhardii throughout the cell cycle. Arch Microbiol. 1975 Aug 28;104(3):249–254. doi: 10.1007/BF00447333. [DOI] [PubMed] [Google Scholar]
  6. Gamble P. E., Mullet J. E. Blue light regulates the accumulation of two psbD-psbC transcripts in barley chloroplasts. EMBO J. 1989 Oct;8(10):2785–2794. doi: 10.1002/j.1460-2075.1989.tb08424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gao J., Kaufman L. S. Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene. Plant Physiol. 1994 Apr;104(4):1251–1257. doi: 10.1104/pp.104.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang L., Bonner B. A., Castelfranco P. A. Regulation of 5-Aminolevulinic Acid (ALA) Synthesis in Developing Chloroplasts : II. Regulation of ALA-Synthesizing Capacity by Phytochrome. Plant Physiol. 1989 Jul;90(3):1003–1008. doi: 10.1104/pp.90.3.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang L., Castelfranco P. A. Regulation of 5-aminolevulinic Acid synthesis in developing chloroplasts : I. Effect of light/dark treatments in vivo and in organello. Plant Physiol. 1989 Jul;90(3):996–1002. doi: 10.1104/pp.90.3.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ilag L. L., Kumar A. M., Söll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell. 1994 Feb;6(2):265–275. doi: 10.1105/tpc.6.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobshagen S., Johnson C. H. Circadian rhythms of gene expression in Chlamydomonas reinhardtii: circadian cycling of mRNA abundances of cab II, and possibly of beta-tubulin and cytochrome c. Eur J Cell Biol. 1994 Jun;64(1):142–152. [PubMed] [Google Scholar]
  12. Janero D. R., Barrnett R. Thylakoid membrane biogenesis in Chlamydomonas reinhardtii 137+. II. Cell-cycle variations in the synthesis and assembly of pigment. J Cell Biol. 1982 May;93(2):411–416. doi: 10.1083/jcb.93.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jasper F., Quednau B., Kortenjann M., Johanningmeier U. Control of cab gene expression in synchronized Chlamydomonas reinhardtii cells. J Photochem Photobiol B. 1991 Nov;11(2):139–150. doi: 10.1016/1011-1344(91)80256-h. [DOI] [PubMed] [Google Scholar]
  14. Johanningmeier U., Howell S. H. Regulation of light-harvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardi. Possible involvement of chlorophyll synthesis precursors. J Biol Chem. 1984 Nov 10;259(21):13541–13549. [PubMed] [Google Scholar]
  15. Klaff P., Gruissem W. Changes in Chloroplast mRNA Stability during Leaf Development. Plant Cell. 1991 May;3(5):517–529. doi: 10.1105/tpc.3.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krinsky N. I., Levine R. P. Carotenoids of Wild Type and Mutant Strains of the Green Aiga, Chlamydomonas reinhardi. Plant Physiol. 1964 Jul;39(4):680–687. doi: 10.1104/pp.39.4.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kwon H. B., Park S. C., Peng H. P., Goodman H. M., Dewdney J., Shih M. C. Identification of a light-responsive region of the nuclear gene encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Plant Physiol. 1994 May;105(1):357–367. doi: 10.1104/pp.105.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matters G. L., Beale S. I. Structure and expression of the Chlamydomonas reinhardtii alad gene encoding the chlorophyll biosynthetic enzyme, delta-aminolevulinic acid dehydratase (porphobilinogen synthase). Plant Mol Biol. 1995 Feb;27(3):607–617. doi: 10.1007/BF00019326. [DOI] [PubMed] [Google Scholar]
  19. Matters G. L., Beale S. I. Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol. 1994 Feb;24(4):617–629. doi: 10.1007/BF00023558. [DOI] [PubMed] [Google Scholar]
  20. Mayer S. M., Beale S. I. Light Regulation of delta-Aminolevulinic Acid Biosynthetic Enzymes and tRNA in Euglena gracilis. Plant Physiol. 1990 Nov;94(3):1365–1375. doi: 10.1104/pp.94.3.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mayer S. M., Beale S. I. delta-Aminolevulinic Acid Biosynthesis from Glutamatein Euglena gracilis: Photocontrol of Enzyme Levels in a Chlorophyll-Free Mutant. Plant Physiol. 1991 Nov;97(3):1094–1102. doi: 10.1104/pp.97.3.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Millar A. J., Kay S. A. Circadian Control of cab Gene Transcription and mRNA Accumulation in Arabidopsis. Plant Cell. 1991 May;3(5):541–550. doi: 10.1105/tpc.3.5.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Quiñlones M. A., Zeiger E. A putative role of the xanthophyll, zeaxanthin, in blue light photoreception of corn coleoptiles. Science. 1994 Apr 22;264(5158):558–561. doi: 10.1126/science.264.5158.558. [DOI] [PubMed] [Google Scholar]
  24. Schmidt W., Hart J., Filner P., Poff K. L. Specific inhibition of phototropism in corn seedlings. Plant Physiol. 1977 Nov;60(5):736–738. doi: 10.1104/pp.60.5.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wiseman A., Gillham N. W., Boynton J. E. Nuclear mutations affecting mitochondrial structure and function in Chlamydomonas. J Cell Biol. 1977 Apr;73(1):56–77. doi: 10.1083/jcb.73.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de Hostos E. L., Schilling J., Grossman A. R. Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet. 1989 Aug;218(2):229–239. doi: 10.1007/BF00331273. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES