Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Oct;109(2):533–539. doi: 10.1104/pp.109.2.533

Intracellular carbonic anhydrase of Chlamydomonas reinhardtii.

J Karlsson 1, T Hiltonen 1, H D Husic 1, Z Ramazanov 1, G Samuelsson 1
PMCID: PMC157617  PMID: 7480345

Abstract

An intracellular carbonic anhydrase (CA; EC 4.2.1.1) was purified to homogeneity from a mutant strain of Chlamydomonas reinhardtii (CW 92) lacking a cell wall. Intact cells were washed to remove periplasmic CA and were lysed and fractionated into soluble and membrane fractions by sedimentation. All of the CA activity sedimented with the membrane fraction and was dissociated by treatment with a buffer containing 200 mM KCI. Solubilized proteins were fractionated by ammonium sulfate precipitation, anionic exchange chromatography, and hydrophobic interaction chromatography. The resulting fraction had a specific activity of 1260 Wilbur-Anderson units/mg protein and was inhibited by acetazolamide (50% inhibition concentration, 12 nM). Final purification was accomplished by the specific absorption of the enzyme to a Centricon-10 microconcentrator filter. A single, 29.5-kD polypeptide was eluted from the filter with sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer, and a 1.5 M ammonium sulfate eluate contained CA activity. In comparison with human CA isoenzyme II, the N-terminal and internal amino acid sequences from the 29.5-kD polypeptide were 40% identical with the N-terminal region and 67% identical with an internal conserved region. Based on this evidence, we postulate that the 29.5-kD polypeptide is an internal CA in C. reinhardtii and that the enzyme is closely related to the alpha-type CAs observed in animal species.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Coleman J. R., Grossman A. R. Biosynthesis of carbonic anhydrase in Chlamydomonas reinhardtii during adaptation to low CO(2). Proc Natl Acad Sci U S A. 1984 Oct;81(19):6049–6053. doi: 10.1073/pnas.81.19.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fawcett T. W., Browse J. A., Volokita M., Bartlett S. G. Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. J Biol Chem. 1990 Apr 5;265(10):5414–5417. [PubMed] [Google Scholar]
  4. Guilloton M. B., Korte J. J., Lamblin A. F., Fuchs J. A., Anderson P. M. Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem. 1992 Feb 25;267(6):3731–3734. [PubMed] [Google Scholar]
  5. Hiltonen T., Karlsson J., Palmqvist K., Clarke A. K., Samuelsson G. Purification and characterisation of an intracellular carbonic anhydrase from the unicellular green alga Coccomyxa. Planta. 1995;195(3):345–351. doi: 10.1007/BF00202591. [DOI] [PubMed] [Google Scholar]
  6. Husic H. D., Kitayama M., Togasaki R. K., Moroney J. V., Morris K. L., Tolbert N. E. Identification of Intracellular Carbonic Anhydrase in Chlamydomonas reinhardtii which Is Distinct from the Periplasmic Form of the Enzyme. Plant Physiol. 1989 Mar;89(3):904–909. doi: 10.1104/pp.89.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Husic H. D., Marcus C. A. Identification of Intracellular Carbonic Anhydrase in Chlamydomonas reinhardtii with a Carbonic Anhydrase-Directed Photoaffinity Label. Plant Physiol. 1994 May;105(1):133–139. doi: 10.1104/pp.105.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Husic H. D., Quigley E. A. Salt-Induced Dissociation of Carbonic Anhydrase from Intact Cells of Chlamydomonas reinhardtii. Plant Physiol. 1990 Sep;94(1):380–383. doi: 10.1104/pp.94.1.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kitayama M., Kitayama K., Togasaki R. K. A cDNA clone encoding a ferredoxin-NADP+ reductase from Chlamydomonas reinhardtii. Plant Physiol. 1994 Dec;106(4):1715–1716. doi: 10.1104/pp.106.4.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Majeau N., Coleman J. R. Isolation and characterization of a cDNA coding for pea chloroplastic carbonic anhydrase. Plant Physiol. 1991 Jan;95(1):264–268. doi: 10.1104/pp.95.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Majeau N., Coleman J. R. Nucleotide sequence of a complementary DNA encoding tobacco chloroplastic carbonic anhydrase. Plant Physiol. 1992 Oct;100(2):1077–1078. doi: 10.1104/pp.100.2.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moroney J. V., Husic H. D., Tolbert N. E. Effect of Carbonic Anhydrase Inhibitors on Inorganic Carbon Accumulation by Chlamydomonas reinhardtii. Plant Physiol. 1985 Sep;79(1):177–183. doi: 10.1104/pp.79.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Raines C. A., Horsnell P. R., Holder C., Lloyd J. C. Arabidopsis thaliana carbonic anhydrase: cDNA sequence and effect of CO2 on mRNA levels. Plant Mol Biol. 1992 Dec;20(6):1143–1148. doi: 10.1007/BF00028900. [DOI] [PubMed] [Google Scholar]
  15. Rawat M., Moroney J. V. Partial characterization of a new isoenzyme of carbonic anhydrase isolated from Chlamydomonas reinhardtii. J Biol Chem. 1991 May 25;266(15):9719–9723. [PubMed] [Google Scholar]
  16. Roeske C. A., Ogren W. L. Nucleotide sequence of pea cDNA encoding chloroplast carbonic anhydrase. Nucleic Acids Res. 1990 Jun 11;18(11):3413–3413. doi: 10.1093/nar/18.11.3413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rosenfeld J., Capdevielle J., Guillemot J. C., Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem. 1992 May 15;203(1):173–179. doi: 10.1016/0003-2697(92)90061-b. [DOI] [PubMed] [Google Scholar]
  18. Spalding M. H., Spreitzer R. J., Ogren W. L. Carbonic Anhydrase-Deficient Mutant of Chlamydomonas reinhardii Requires Elevated Carbon Dioxide Concentration for Photoautotrophic Growth. Plant Physiol. 1983 Oct;73(2):268–272. doi: 10.1104/pp.73.2.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sung Y. C., Fuchs J. A. Characterization of the cyn operon in Escherichia coli K12. J Biol Chem. 1988 Oct 15;263(29):14769–14775. [PubMed] [Google Scholar]
  20. Sültemeyer D. F., Fock H. P., Canvin D. T. Mass Spectrometric Measurement of Intracellular Carbonic Anhydrase Activity in High and Low C(i) Cells of Chlamydomonas: Studies Using O Exchange with C/O Labeled Bicarbonate. Plant Physiol. 1990 Nov;94(3):1250–1257. doi: 10.1104/pp.94.3.1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tachiki A., Fukuzawa H., Miyachi S. Characterization of carbonic anhydrase isozyme CA2, which is the CAH2 gene product, in Chlamydomonas reinhardtii. Biosci Biotechnol Biochem. 1992 May;56(5):794–798. doi: 10.1271/bbb.56.794. [DOI] [PubMed] [Google Scholar]
  22. Tashian R. E. Genetics of the mammalian carbonic anhydrases. Adv Genet. 1992;30:321–356. doi: 10.1016/s0065-2660(08)60323-5. [DOI] [PubMed] [Google Scholar]
  23. Venta P. J., Montgomery J. C., Tashian R. E. Molecular genetics of carbonic anhydrase isozymes. Isozymes Curr Top Biol Med Res. 1987;14:59–72. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES