Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Oct;109(2):651–658. doi: 10.1104/pp.109.2.651

Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

A Schwartz 1, N Ilan 1, M Schwarz 1, J Scheaffer 1, S M Assmann 1, J I Schroeder 1
PMCID: PMC157632  PMID: 12228619

Abstract

The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

Full Text

The Full Text of this article is available as a PDF (776.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan A. C., Fricker M. D., Ward J. L., Beale M. H., Trewavas A. J. Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Commelina Guard Cells. Plant Cell. 1994 Sep;6(9):1319–1328. doi: 10.1105/tpc.6.9.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Assmann S. M. Signal transduction in guard cells. Annu Rev Cell Biol. 1993;9:345–375. doi: 10.1146/annurev.cb.09.110193.002021. [DOI] [PubMed] [Google Scholar]
  3. Cosgrove D. J., Hedrich R. Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta. 1991 Dec;186(1):143–153. doi: 10.1007/BF00201510. [DOI] [PubMed] [Google Scholar]
  4. Fairley-Grenot K., Assmann S. M. Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean. Plant Cell. 1991 Sep;3(9):1037–1044. doi: 10.1105/tpc.3.9.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hedrich R., Busch H., Raschke K. Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J. 1990 Dec;9(12):3889–3892. doi: 10.1002/j.1460-2075.1990.tb07608.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kearns E. V., Assmann S. M. The Guard Cell-Environment Connection. Plant Physiol. 1993 Jul;102(3):711–715. doi: 10.1104/pp.102.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lemtiri-Chlieh F., MacRobbie E. A. Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch-clamp study. J Membr Biol. 1994 Jan;137(2):99–107. doi: 10.1007/BF00233479. [DOI] [PubMed] [Google Scholar]
  8. Linder B., Raschke K. A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Lett. 1992 Nov 16;313(1):27–30. doi: 10.1016/0014-5793(92)81176-m. [DOI] [PubMed] [Google Scholar]
  9. Marten I., Zeilinger C., Redhead C., Landry D. W., al-Awqati Q., Hedrich R. Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. EMBO J. 1992 Oct;11(10):3569–3575. doi: 10.1002/j.1460-2075.1992.tb05440.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McAinsh M. R., Brownlee C., Hetherington A. M. Visualizing Changes in Cytosolic-Free Ca2+ during the Response of Stomatal Guard Cells to Abscisic Acid. Plant Cell. 1992 Sep;4(9):1113–1122. doi: 10.1105/tpc.4.9.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Poffenroth M., Green D. B., Tallman G. Sugar Concentrations in Guard Cells of Vicia faba Illuminated with Red or Blue Light : Analysis by High Performance Liquid Chromatography. Plant Physiol. 1992 Apr;98(4):1460–1471. doi: 10.1104/pp.98.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schmidt C., Schroeder J. I. Anion Selectivity of Slow Anion Channels in the Plasma Membrane of Guard Cells (Large Nitrate Permeability). Plant Physiol. 1994 Sep;106(1):383–391. doi: 10.1104/pp.106.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schroeder J. I., Fang H. H. Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11583–11587. doi: 10.1073/pnas.88.24.11583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schroeder J. I., Hagiwara S. Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9305–9309. doi: 10.1073/pnas.87.23.9305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schroeder J. I., Hedrich R. Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci. 1989 May;14(5):187–192. doi: 10.1016/0968-0004(89)90272-7. [DOI] [PubMed] [Google Scholar]
  16. Schroeder J. I., Keller B. U. Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5025–5029. doi: 10.1073/pnas.89.11.5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwartz A., Wu W. H., Tucker E. B., Assmann S. M. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4019–4023. doi: 10.1073/pnas.91.9.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Serrano E. E., Zeiger E., Hagiwara S. Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. Proc Natl Acad Sci U S A. 1988 Jan;85(2):436–440. doi: 10.1073/pnas.85.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES