Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Oct;109(2):659–665. doi: 10.1104/pp.109.2.659

Chill-Induced Changes in the Activity and Abundance of the Vacuolar Proton-Pumping Pyrophosphatase from Mung Bean Hypocotyls.

C P Darley 1, J M Davies 1, D Sanders 1
PMCID: PMC157633  PMID: 12228620

Abstract

Changes in the properties of extractable vacuolar H+-pumping pyrophosphatase (V-PPase) and vacuolar ATPase activities in chilling-sensitive seedlings of mung bean (Vigna radiata) were investigated. Following chilling at 4[deg]C for 48 h, both hydrolytic and proton-pumping activities of the V-PPase increased 1.5- to 2-fold over controls and remained elevated even after 72 h at low temperatures. Vacuolar ATPase levels did not change significantly throughout the chilling regime. However a large increase in alcohol dehydrogenase activity during chilling suggests a shift toward fermentative metabolism, which can be expected to decrease ATPase activity in situ. Western blotting of vacuolar membrane-enriched fractions from control and treated plants has confirmed that the changes in V-PPase activity are mirrored by increases in the amount of pump protein. Results suggest a specific role for the V-PPase in protecting chill-sensitive plants from the injurious effects of low temperatures via the maintenance of the proton gradient across the vacuolar membrane.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Carystinos G. D., MacDonald H. R., Monroy A. F., Dhindsa R. S., Poole R. J. Vacuolar H(+)-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol. 1995 Jun;108(2):641–649. doi: 10.1104/pp.108.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christie P. J., Hahn M., Walbot V. Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiol. 1991 Mar;95(3):699–706. doi: 10.1104/pp.95.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hwang S. Y., Vantoai T. T. Abscisic Acid induces anaerobiosis tolerance in corn. Plant Physiol. 1991 Oct;97(2):593–597. doi: 10.1104/pp.97.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jennings I. R., Rea P. A., Leigh R. A., Sanders D. Quantitative and rapid estimation of h fluxes in membrane vesicles : software for analysis of fluorescence quenching and relaxation. Plant Physiol. 1988 Apr;86(4):1257–1263. doi: 10.1104/pp.86.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Maeshima M., Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem. 1989 Nov 25;264(33):20068–20073. [PubMed] [Google Scholar]
  7. Matsuura-Endo C., Maeshima M., Yoshida S. Mechanism of the Decline in Vacuolar H -ATPase Activity in Mung Bean Hypocotyls during Chilling. Plant Physiol. 1992 Oct;100(2):718–722. doi: 10.1104/pp.100.2.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moriyama Y., Nelson N. Cold inactivation of vacuolar proton-ATPases. J Biol Chem. 1989 Feb 25;264(6):3577–3582. [PubMed] [Google Scholar]
  9. Rea P. A., Kim Y., Sarafian V., Poole R. J., Davies J. M., Sanders D. Vacuolar H(+)-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci. 1992 Sep;17(9):348–353. doi: 10.1016/0968-0004(92)90313-x. [DOI] [PubMed] [Google Scholar]
  10. Rea P. A., Poole R. J. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. doi: 10.1104/pp.77.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rivoal J., Ricard B., Pradet A. Lactate Dehydrogenase in Oryza sativa L. Seedlings and Roots: Identification and Partial Characterization. Plant Physiol. 1991 Mar;95(3):682–686. doi: 10.1104/pp.95.3.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Roberts J. K., Callis J., Jardetzky O., Walbot V., Freeling M. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6029–6033. doi: 10.1073/pnas.81.19.6029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  14. Sze H, Ward JM, Lai S, Perera I., I VACUOLAR-TYPE H+-TRANSLOCATING ATPases IN PLANT ENDOMEMBRANES: SUBUNIT ORGANIZATION AND MULTIGENE FAMILIES. J Exp Biol. 1992 Nov 1;172(Pt 1):123–135. doi: 10.1242/jeb.172.1.123. [DOI] [PubMed] [Google Scholar]
  15. Taiz L. THE PLANT VACUOLE. J Exp Biol. 1992 Nov 1;172(Pt 1):113–122. doi: 10.1242/jeb.172.1.113. [DOI] [PubMed] [Google Scholar]
  16. Yoshida S. Low Temperature-Induced Cytoplasmic Acidosis in Cultured Mung Bean (Vigna radiata [L.] Wilczek) Cells. Plant Physiol. 1994 Apr;104(4):1131–1138. doi: 10.1104/pp.104.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yoshida S., Matsuura-Endo C. Comparison of Temperature Dependency of Tonoplast Proton Translocation between Plants Sensitive and Insensitive to Chilling. Plant Physiol. 1991 Feb;95(2):504–508. doi: 10.1104/pp.95.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yoshida S., Matsuura C., Etani S. Impairment of Tonoplast H-ATPase as an Initial Physiological Response of Cells to Chilling in Mung Bean (Vigna radiata [L.] Wilczek). Plant Physiol. 1989 Feb;89(2):634–642. doi: 10.1104/pp.89.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES