Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Oct;109(2):681–685. doi: 10.1104/pp.109.2.681

Pseudoreversion substitution at large-subunit residue 54 influences the CO2/O2 specificity of chloroplast ribulose-bisphosphate carboxylase/oxygenase.

R J Spreitzer 1, G Thow 1, G Zhu 1
PMCID: PMC157636  PMID: 7480352

Abstract

Chlamydomonas reinhardtii mutant 31-4E lacks ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) holoenzyme due to a mutation in the chloroplast rbcL gene. This mutation causes a glycine54-to-aspartate substitution within the N-terminal domain of the Rubisco large subunit. In the present study, photosynthesis-competent revertants were selected to determine whether other amino acid substitutions might complement the primary defect. Revertants were found to arise from only true reversion or either of two forms of pseudoreversion affecting residue 54. One pseudorevertant has a glycine54-to-alanine substitution that decreases the accumulation of holoenzyme, but the purified Rubisco has near-normal kinetic properties. The other pseudorevertant has a glycine54-to-valine substitution that causes an even greater decrease in holoenzyme accumulation. Rubisco purified from this strain was found to have an 83% decrease in the Vmax of carboxylation and an 18% decrease in the CO2/O2 specificity factor. These results indicate that small increases in the size of amino acid side chains can influence Rubisco assembly or stability. Even though such changes occur far from the active site, they also play a significant role in determining Rubisco catalytic efficiency.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Chen Z. X., Chastain C. J., Al-Abed S. R., Chollet R., Spreitzer R. J. Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4696–4699. doi: 10.1073/pnas.85.13.4696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Z. X., Spreitzer R. J. Chloroplast intragenic suppression enhances the low CO2/O2 specificity of mutant ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem. 1989 Feb 25;264(6):3051–3053. [PubMed] [Google Scholar]
  4. Chène P., Day A. G., Fersht A. R. Mutation of asparagine 111 of rubisco from Rhodospirillum rubrum alters the carboxylase/oxygenase specificity. J Mol Biol. 1992 Jun 5;225(3):891–896. doi: 10.1016/0022-2836(92)90408-c. [DOI] [PubMed] [Google Scholar]
  5. Harpel M. R., Hartman F. C. Enhanced CO2/O2 specificity of a site-directed mutant of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem. 1992 Apr 5;267(10):6475–6478. [PubMed] [Google Scholar]
  6. Hartman F. C., Harpel M. R. Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu Rev Biochem. 1994;63:197–234. doi: 10.1146/annurev.bi.63.070194.001213. [DOI] [PubMed] [Google Scholar]
  7. Jordan D. B., Ogren W. L. A Sensitive Assay Procedure for Simultaneous Determination of Ribulose-1,5-bisphosphate Carboxylase and Oxygenase Activities. Plant Physiol. 1981 Feb;67(2):237–245. doi: 10.1104/pp.67.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knight S., Andersson I., Brändén C. I. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site. J Mol Biol. 1990 Sep 5;215(1):113–160. doi: 10.1016/S0022-2836(05)80100-7. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Larimer F. W., Harpel M. R., Hartman F. C. Beta-elimination of phosphate from reaction intermediates by site-directed mutants of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem. 1994 Apr 15;269(15):11114–11120. [PubMed] [Google Scholar]
  11. Lee G. J., McFadden B. A. Serine-376 contributes to the binding of substrate by ribulose-bisphosphate carboxylase/oxygenase from Anacystis nidulans. Biochemistry. 1992 Mar 3;31(8):2304–2308. doi: 10.1021/bi00123a014. [DOI] [PubMed] [Google Scholar]
  12. Schreuder H. A., Knight S., Curmi P. M., Andersson I., Cascio D., Sweet R. M., Brändén C. I., Eisenberg D. Crystal structure of activated tobacco rubisco complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate. Protein Sci. 1993 Jul;2(7):1136–1146. doi: 10.1002/pro.5560020708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith H. B., Larimer F. W., Hartman F. C. An engineered change in substrate specificity of ribulosebisphosphate carboxylase/oxygenase. J Biol Chem. 1990 Jan 25;265(3):1243–1245. [PubMed] [Google Scholar]
  14. Spreitzer R. J., Goldschmidt-Clermont M., Rahire M., Rochaix J. D. Nonsense mutations in the Chlamydomonas chloroplast gene that codes for the large subunit of ribulosebisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5460–5464. doi: 10.1073/pnas.82.16.5460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Spreitzer R. J., Mets L. Photosynthesis-deficient Mutants of Chlamydomonas reinhardii with Associated Light-sensitive Phenotypes. Plant Physiol. 1981 Mar;67(3):565–569. doi: 10.1104/pp.67.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thow G., Zhu G., Spreitzer R. J. Complementing substitutions within loop regions 2 and 3 of the alpha/beta-barrel active site influence the CO2/O2 specificity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry. 1994 May 3;33(17):5109–5114. doi: 10.1021/bi00183a014. [DOI] [PubMed] [Google Scholar]
  17. Zhu G., Spreitzer R. J. Directed mutagenesis of chloroplast ribulosebisphosphate carboxylase/oxygenase. Substitutions at large subunit asparagine 123 and serine 379 decrease CO2/O2 specificity. J Biol Chem. 1994 Feb 11;269(6):3952–3956. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES