Abstract
A microsomal fatty acid elongase activity measured in epidermis of rapidly expanding leek (Allium porrum L.) was 10-fold higher in specific activity than preparations from store-bought leek. These preparations elongated acyl chains effectively using endogenous or supplied primers. Elongation of C20:0 was specifically inhibited by 2 [mu]M cerulenin, and labeling experiments with [3H]cerulenin labeled two polypeptides (65 and 88 kD). ATP was required for maximal elongase activity in expanding leaves but was lost in nonexpanding tissues. Both [14C]stearoyl-coenzyme A (CoA) and [14C]stearate were maximally elongated in the presence of ATP. Addition of fully reduced CoA, however, inhibited [14C]stearate elongation, suggesting that stearoyl-CoA synthesis was not a prerequisite for elongation. Furthermore, microsomes preincubated with [14C]stearoyl-CoA plus ATP resulted in loss of radiolabel from the acyl-CoA pool without a corresponding loss in elongating activity. The lack of correlation between elongating activity and the label retained in the putative acyl-CoA substrate pool suggests that acyl-CoAs may not be the immediate precursors for elongation and that ATP plays a critical, yet undefined, role in the elongation process. We propose that an ATP-dependent elongating activity may generate the long-chain fatty acids required for wax biosynthesis.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal V. P., Lessire R., Stumpf P. K. Biosynthesis of very long chain fatty acids in microsomes from epidermal cells of Allium porrum L. Arch Biochem Biophys. 1984 May 1;230(2):580–589. doi: 10.1016/0003-9861(84)90438-7. [DOI] [PubMed] [Google Scholar]
- Agrawal V. P., Stumpf P. K. Characterization and solubilization of an acyl chain elongation system in microsomes of leek epidermal cells. Arch Biochem Biophys. 1985 Jul;240(1):154–165. doi: 10.1016/0003-9861(85)90018-9. [DOI] [PubMed] [Google Scholar]
- Bernert J. T., Jr, Sprecher H. An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids by rat liver microsomes. J Biol Chem. 1977 Oct 10;252(19):6736–6744. [PubMed] [Google Scholar]
- Bernert J. T., Jr, Sprecher H. Solubilization and partial purification of an enzyme involved in rat liver microsomal fatty acid chain elongation: beta-hydroxyacyl-CoA dehydrase. J Biol Chem. 1979 Nov 25;254(22):11584–11590. [PubMed] [Google Scholar]
- Bessoule J. J., Lessire R., Cassagne C. Partial purification of the acyl-CoA elongase of Allium porrum leaves. Arch Biochem Biophys. 1989 Feb 1;268(2):475–484. doi: 10.1016/0003-9861(89)90315-9. [DOI] [PubMed] [Google Scholar]
- Bolton P., Harwood J. L. Fatty acid biosynthesis by a particulate preparation from germinating pea. Biochem J. 1977 Nov 15;168(2):261–269. doi: 10.1042/bj1680261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cassagne C., Lessire R. Biosynthesis of saturated very long chain fatty acids by purified membrane fractions from leek epidermal cells. Arch Biochem Biophys. 1978 Nov;191(1):146–152. doi: 10.1016/0003-9861(78)90076-0. [DOI] [PubMed] [Google Scholar]
- Christiansen E. N., Rørtveit T., Norum K. R., Thomassen M. S. Fatty-acid chain elongation in rat small intestine. Biochem J. 1986 Jul 1;237(1):293–295. doi: 10.1042/bj2370293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook H. W. Chain elongation in the formation of polyunsaturated fatty acids by brain: some properties of the microsomal system. Arch Biochem Biophys. 1982 Apr 1;214(2):695–704. doi: 10.1016/0003-9861(82)90076-5. [DOI] [PubMed] [Google Scholar]
- D'Agnolo G., Rosenfeld I. S., Awaya J., Omura S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase. Biochim Biophys Acta. 1973 Nov 29;326(2):155–156. doi: 10.1016/0005-2760(73)90241-5. [DOI] [PubMed] [Google Scholar]
- Fehling E., Mukherjee K. D. Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. Biochim Biophys Acta. 1991 Apr 3;1082(3):239–246. doi: 10.1016/0005-2760(91)90198-q. [DOI] [PubMed] [Google Scholar]
- James D. W., Jr, Lim E., Keller J., Plooy I., Ralston E., Dooner H. K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell. 1995 Mar;7(3):309–319. doi: 10.1105/tpc.7.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolattukudy P. E., Buckner J. S. Chain elongation of fatty acids by cell-free extracts of epidermis from pea leaves (pisum sativum). Biochem Biophys Res Commun. 1972 Jan 31;46(2):801–807. doi: 10.1016/s0006-291x(72)80212-2. [DOI] [PubMed] [Google Scholar]
- Martin J. F., Mcdaniel L. E. Specific inhibition of candicidin biosynthesis by the lipogenic inhibitor cerulenin. Biochim Biophys Acta. 1975 Dec 5;411(2):186–194. doi: 10.1016/0304-4165(75)90298-6. [DOI] [PubMed] [Google Scholar]
- Monroy G., Kelker H. C., Pullman M. E. Partial purification and properties of an acyl coenzyme A:sn-glycerol 3-phosphate acyltransferase from rat liver mitochondria. J Biol Chem. 1973 Apr 25;248(8):2845–2852. [PubMed] [Google Scholar]
- Omura S. Cerulenin. Methods Enzymol. 1981;72:520–532. [PubMed] [Google Scholar]
- Podack E. R., Lakomek M., Saathoff G., Seubert W. On the mechanism and control of the malonyl-CoA-dependent chain elongation of fatty acids. Characterization of hexenoyl-CoA reductase from liver and adrenal cortex as a constituent of the microsomal chain elongation. Eur J Biochem. 1974 Jun 1;45(1):13–23. doi: 10.1111/j.1432-1033.1974.tb03524.x. [DOI] [PubMed] [Google Scholar]
- Powell G. L., Grothusen J. R., Zimmerman J. K., Evans C. A., Fish W. W. A re-examination of some properties of fatty acyl-CoA micelles. J Biol Chem. 1981 Dec 25;256(24):12740–12747. [PubMed] [Google Scholar]
- Reichelt W. H., Grav H. J., Christiansen E. N. The regulation of fatty acid chain elongation in rat liver microsomes: role of fasting and CoASH. Biochim Biophys Acta. 1994 Sep 15;1214(2):109–114. doi: 10.1016/0005-2760(94)90033-7. [DOI] [PubMed] [Google Scholar]
- Roughan G., Nishida I. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves. Arch Biochem Biophys. 1990 Jan;276(1):38–46. doi: 10.1016/0003-9861(90)90007-l. [DOI] [PubMed] [Google Scholar]
- Rutkoski A., Jaworski J. G. An improved synthesis of malonyl-coenzyme A. Anal Biochem. 1978 Nov;91(1):370–373. doi: 10.1016/0003-2697(78)90854-0. [DOI] [PubMed] [Google Scholar]
- Schneider F., Lessire R., Bessoule J. J., Juguelin H., Cassagne C. Effect of cerulenin on the synthesis of very-long-chain fatty acids in microsomes from leek seedlings. Biochim Biophys Acta. 1993 Nov 7;1152(2):243–252. doi: 10.1016/0005-2736(93)90255-x. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Shimakata T., Stumpf P. K. Isolation and function of spinach leaf beta-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5808–5812. doi: 10.1073/pnas.79.19.5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siggaard-Andersen M. Role of Escherichia coli beta-ketoacyl-ACP synthase I in unsaturated fatty acid synthesis. Carlsberg Res Commun. 1988;53(6):371–379. doi: 10.1007/BF02983312. [DOI] [PubMed] [Google Scholar]
- Sloan M. E., Rodis P., Wasserman B. P. CHAPS Solubilization and Functional Reconstitution of beta-Glucan Synthase from Red Beet Root (Beta vulgaris L.) Storage Tissue. Plant Physiol. 1987 Oct;85(2):516–522. doi: 10.1104/pp.85.2.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. C., Weber N., Hogge L. R., Underhill E. W. A simple enzymatic method for the preparation of radiolabeled erucoyl-CoA and other long-chain fatty acyl-CoAs and their characterization by mass spectrometry. Anal Biochem. 1990 Feb 1;184(2):311–316. doi: 10.1016/0003-2697(90)90686-4. [DOI] [PubMed] [Google Scholar]