Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahner B. A., Price N. M., Morel F. M. Phytochelatin production by marine phytoplankton at low free metal ion concentrations: laboratory studies and field data from Massachusetts Bay. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8433–8436. doi: 10.1073/pnas.91.18.8433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Goldsbrough P. B. Increased Activity of [gamma]-Glutamylcysteine Synthetase in Tomato Cells Selected for Cadmium Tolerance. Plant Physiol. 1994 Sep;106(1):233–239. doi: 10.1104/pp.106.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Knecht J. A., Van Dillen M., Koevoets PLM., Schat H., Verkleij JAC., Ernst WHO. Phytochelatins in Cadmium-Sensitive and Cadmium-Tolerant Silene vulgaris (Chain Length Distribution and Sulfide Incorporation). Plant Physiol. 1994 Jan;104(1):255–261. doi: 10.1104/pp.104.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grill E., Winnacker E. L., Zenk M. H. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A. 1987 Jan;84(2):439–443. doi: 10.1073/pnas.84.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grill E., Winnacker E. L., Zenk M. H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science. 1985 Nov 8;230(4726):674–676. doi: 10.1126/science.230.4726.674. [DOI] [PubMed] [Google Scholar]
- Hayashi Y., Nakagawa C. W., Mutoh N., Isobe M., Goto T. Two pathways in the biosynthesis of cadystins (gamma EC)nG in the cell-free system of the fission yeast. Biochem Cell Biol. 1991 Feb-Mar;69(2-3):115–121. doi: 10.1139/o91-018. [DOI] [PubMed] [Google Scholar]
- Howden R., Andersen C. R., Goldsbrough P. B., Cobbett C. S. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol. 1995 Apr;107(4):1067–1073. doi: 10.1104/pp.107.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howden R., Goldsbrough P. B., Andersen C. R., Cobbett C. S. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 1995 Apr;107(4):1059–1066. doi: 10.1104/pp.107.4.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klapheck S., Fliegner W., Zimmer I. Hydroxymethyl-phytochelatins [(gamma-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Plant Physiol. 1994 Apr;104(4):1325–1332. doi: 10.1104/pp.104.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klapheck S., Schlunz S., Bergmann L. Synthesis of Phytochelatins and Homo-Phytochelatins in Pisum sativum L. Plant Physiol. 1995 Feb;107(2):515–521. doi: 10.1104/pp.107.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meuwly P., Thibault P., Schwan A. L., Rauser W. E. Three families of thiol peptides are induced by cadmium in maize. Plant J. 1995 Mar;7(3):391–400. doi: 10.1046/j.1365-313x.1995.7030391.x. [DOI] [PubMed] [Google Scholar]
- Mutoh N., Hayashi Y. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun. 1988 Feb 29;151(1):32–39. doi: 10.1016/0006-291x(88)90555-4. [DOI] [PubMed] [Google Scholar]
- Mutoh N., Nakagawa C. W., Ando S., Tanabe K., Hayashi Y. Cloning and sequencing of the gene encoding the large subunit of glutathione synthetase of Schizosaccharomyces pombe. Biochem Biophys Res Commun. 1991 Nov 27;181(1):430–436. doi: 10.1016/s0006-291x(05)81437-8. [DOI] [PubMed] [Google Scholar]
- Ortiz D. F., Ruscitti T., McCue K. F., Ow D. W. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem. 1995 Mar 3;270(9):4721–4728. doi: 10.1074/jbc.270.9.4721. [DOI] [PubMed] [Google Scholar]
- Rauser W. E., Meuwly P. Retention of cadmium in roots of maize seedlings. Role of complexation by phytochelatins and related thiol peptides. Plant Physiol. 1995 Sep;109(1):195–202. doi: 10.1104/pp.109.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
- Reese R. N., White C. A., Winge D. R. Cadmium-Sulfide Crystallites in Cd-(gammaEC)(n)G Peptide Complexes from Tomato. Plant Physiol. 1992 Jan;98(1):225–229. doi: 10.1104/pp.98.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson N. J., Tommey A. M., Kuske C., Jackson P. J. Plant metallothioneins. Biochem J. 1993 Oct 1;295(Pt 1):1–10. doi: 10.1042/bj2950001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salt D. E., Wagner G. J. Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem. 1993 Jun 15;268(17):12297–12302. [PubMed] [Google Scholar]
- Speiser D. M., Abrahamson S. L., Banuelos G., Ow D. W. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex. Plant Physiol. 1992 Jul;99(3):817–821. doi: 10.1104/pp.99.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thumann J., Grill E., Winnacker E. L., Zenk M. H. Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Lett. 1991 Jun 17;284(1):66–69. doi: 10.1016/0014-5793(91)80763-s. [DOI] [PubMed] [Google Scholar]
- Vögeli-Lange R., Wagner G. J. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves : implication of a transport function for cadmium-binding peptides. Plant Physiol. 1990 Apr;92(4):1086–1093. doi: 10.1104/pp.92.4.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]