Abstract
Using high-performance liquid chromatography and nuclear magnetic resonance we identified vicianin as the cyanogenic compound of Phlebodium aureum. The (R)-hydroxynitrile lyase involved during cyanogenesis in the catabolism of the aglycon ([R]-mandelonitrile) was purified to apparent homogeneity. The purified holoenzyme is a homomultimer with subunits of Mr = 20,000. At least three isoforms of the enzyme exist. In contrast to other hydroxynitrile lyases, mandelonitrile lyase (MDL) from P. aureum was not inhibited by sulfhydryl- or hydroxyl-modifying reagents, suggesting a different catalytic mechanism. The enzyme is active over a broad temperature range, with maximum activity between 35 and 50[deg]C, and a pH optimum at 6.5. In contrast to (R)-MDLs isolated from several species of the Rosaceae family, (R)-MDL from P. aureum is not a flavoprotein. The substrate specificity was investigated using immobilized enzyme and diisopropyl ether as solvent. The addition of cyanide to aromatic and heterocyclic carbonyls is catalyzed by this (R)-MDL, whereas aliphatic carbonyls are poorly converted.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht J., Jansen I., Kula M. R. Improved purification of an (R)-oxynitrilase from Linum usitatissimum (flax) and investigation of the substrate range. Biotechnol Appl Biochem. 1993 Apr;17(Pt 2):191–203. [PubMed] [Google Scholar]
- Gerstner E., Pfeil E. Zur Kenntnis des Flavinenzyms Hydroxynitril-Lyase (D-Oxynitrilase. Hoppe Seylers Z Physiol Chem. 1972 Mar;353(3):271–286. doi: 10.1515/bchm2.1972.353.1.271. [DOI] [PubMed] [Google Scholar]
- Jorns M. S. Mechanism of catalysis by the flavoenzyme oxynitrilase. J Biol Chem. 1979 Dec 10;254(23):12145–12152. [PubMed] [Google Scholar]
- Kuroki G. W., Conn E. E. Mandelonitrile lyase from Ximenia americana L.: stereospecificity and lack of flavin prosthetic group. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6978–6981. doi: 10.1073/pnas.86.18.6978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lauble H., Müller K., Schindelin H., Förster S., Effenberger F. Crystallization and preliminary X-ray diffraction studies of mandelonitrile lyase from almonds. Proteins. 1994 Aug;19(4):343–347. doi: 10.1002/prot.340190410. [DOI] [PubMed] [Google Scholar]
- Liao D. I., Remington S. J. Structure of wheat serine carboxypeptidase II at 3.5-A resolution. A new class of serine proteinase. J Biol Chem. 1990 Apr 25;265(12):6528–6531. doi: 10.2210/pdb2sc2/pdb. [DOI] [PubMed] [Google Scholar]
- Selmar D., Lieberei R., Biehl B. Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 1988 Mar;86(3):711–716. doi: 10.1104/pp.86.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wajant H., Mundry K. W., Pfizenmaier K. Molecular cloning of hydroxynitrile lyase from Sorghum bicolor (L.). Homologies to serine carboxypeptidases. Plant Mol Biol. 1994 Oct;26(2):735–746. doi: 10.1007/BF00013758. [DOI] [PubMed] [Google Scholar]
- Xu L. L., Singh B. K., Conn E. E. Purification and characterization of acetone cyanohydrin lyase from Linum usitatissimum. Arch Biochem Biophys. 1988 Jun;263(2):256–263. doi: 10.1016/0003-9861(88)90634-0. [DOI] [PubMed] [Google Scholar]
- Xu L. L., Singh B. K., Conn E. E. Purification and characterization of mandelonitrile lyase from Prunus lyonii. Arch Biochem Biophys. 1986 Nov 1;250(2):322–328. doi: 10.1016/0003-9861(86)90733-2. [DOI] [PubMed] [Google Scholar]