Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Dec;109(4):1301–1307. doi: 10.1104/pp.109.4.1301

Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

R M Cook 1, J G Lindsay 1, M B Wilkins 1, H G Nimmo 1
PMCID: PMC157663  PMID: 12228671

Abstract

The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle.

Full Text

The Full Text of this article is available as a PDF (739.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Budde R. J., Randall D. D. Pea leaf mitochondrial pyruvate dehydrogenase complex is inactivated in vivo in a light-dependent manner. Proc Natl Acad Sci U S A. 1990 Jan;87(2):673–676. doi: 10.1073/pnas.87.2.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  3. Day D. A. Malate Decarboxylation by Kalanchoë daigremontiana Mitochondria and Its Role in Crassulacean Acid Metabolism. Plant Physiol. 1980 Apr;65(4):675–679. doi: 10.1104/pp.65.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grover S. D., Wedding R. T. Kinetic Ramifications of the Association-Dissociation Behavior of NAD Malic Enzyme : A Possible Regulatory Mechanism. Plant Physiol. 1982 Oct;70(4):1169–1172. doi: 10.1104/pp.70.4.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grover S. D., Wedding R. T. Modulation of the activity of NAD malic enzyme from solanum tuberosum by changes in oligomeric state. Arch Biochem Biophys. 1984 Nov 1;234(2):418–425. doi: 10.1016/0003-9861(84)90288-1. [DOI] [PubMed] [Google Scholar]
  6. Harris E. J., van Dam K. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria. Biochem J. 1968 Feb;106(3):759–766. doi: 10.1042/bj1060759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kalt W., Osmond C. B., Siedow J. N. Malate Metabolism in the Dark After CO(2) Fixation in the Crassulacean Plant Kalanchoë tubiflora. Plant Physiol. 1990 Oct;94(2):826–832. doi: 10.1104/pp.94.2.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kraaijenhof R., Tsou C. S., van Dam K. The determination of the rate of uptake of substrates by rat-liver mitochondria. Biochim Biophys Acta. 1969 Apr 8;172(3):580–582. doi: 10.1016/0005-2728(69)90156-x. [DOI] [PubMed] [Google Scholar]
  9. Nimmo G. A., Nimmo H. G., Hamilton I. D., Fewson C. A., Wilkins M. B. Purification of the phosphorylated night form and dephosphorylated day form of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi. Biochem J. 1986 Oct 1;239(1):213–220. doi: 10.1042/bj2390213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wedding R. T., Black M. K. Physical and Kinetic Properties and Regulation of the NAD Malic Enzyme Purified from Leaves of Crassula argentea. Plant Physiol. 1983 Aug;72(4):1021–1028. doi: 10.1104/pp.72.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Willeford K. O., Wedding R. T. Regulation of the NAD Malic Enzyme from Crassula. Plant Physiol. 1986 Mar;80(3):792–795. doi: 10.1104/pp.80.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. van Dam K., Tsou C. S. Accumulation of substrates by mitochondria. Biochim Biophys Acta. 1968 Oct 1;162(3):301–309. doi: 10.1016/0005-2728(68)90116-3. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES