Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Dec;109(4):1327–1335. doi: 10.1104/pp.109.4.1327

Molecular characterization of the plastidic glucose-6-phosphate dehydrogenase from potato in comparison to its cytosolic counterpart.

A von Schaewen 1, G Langenkämper 1, K Graeve 1, I Wenderoth 1, R Scheibe 1
PMCID: PMC157666  PMID: 8539293

Abstract

We report on the cloning of a plastidic glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from higher plants. The complete sequence of the plastidic enzyme was obtained after rapid amplification of cDNA ends and comprises a putative plastidic transit peptide. Sequences amplified from leaf or root poly(A+) RNA are identical. In contrast to the cytosolic enzyme, the plastidic isoform is subject to redox modulation, i.e. thioredoxin-mediated inactivation by light. But when the plastidic enzyme is compared to a cyanobacterial homolog, none of the cysteine residues is conserved. The recombinant enzyme was used to raise antibodies in rabbits. Gene expression was studied in potato (Solanum tuberosum L.), at both the RNA and protein levels, revealing different patterns for the isoforms. The gene encoding the cytosolic enzyme was transcribed in all tissues tested, and the highest transcription was detected in tubers. In contrast, expression of the gene encoding the plastidic enzyme was confined to green tissues. Wounding of leaves resulted in a slight increase in the expression of the gene encoding the cytosolic isoform and a shutdown of the plastidic counterpart. Compared to the situation in soil, elevated transcription of the gene encoding the plastidic enzyme is found in roots of hydroponically grown potato plants, which is in agreement with the postulated role for this isoform in nitrite reduction.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostino A., Jeffrey P., Hatch M. D. Amino Acid Sequence and Molecular Weight of Native NADP Malate Dehydrogenase from the C(4) Plant Zea mays. Plant Physiol. 1992 Apr;98(4):1506–1510. doi: 10.1104/pp.98.4.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buchanan B. B. Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys. 1991 Jul;288(1):1–9. doi: 10.1016/0003-9861(91)90157-e. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crétin C., Luchetta P., Joly C., Decottignies P., Lepiniec L., Gadal P., Sallantin M., Huet J. C., Pernollet J. C. Primary structure of sorghum malate dehydrogenase (NADP) deduced from cDNA sequence. Homology with malate dehydrogenase (NAD). Eur J Biochem. 1990 Sep 11;192(2):299–303. doi: 10.1111/j.1432-1033.1990.tb19227.x. [DOI] [PubMed] [Google Scholar]
  5. Fickenscher K., Scheibe R. Purification and properties of the cytoplasmic glucose-6-phosphate dehydrogenase from pea leaves. Arch Biochem Biophys. 1986 Jun;247(2):393–402. doi: 10.1016/0003-9861(86)90598-9. [DOI] [PubMed] [Google Scholar]
  6. Frangioni J. V., Neel B. G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem. 1993 Apr;210(1):179–187. doi: 10.1006/abio.1993.1170. [DOI] [PubMed] [Google Scholar]
  7. Gavel Y., von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 1990 Feb 26;261(2):455–458. doi: 10.1016/0014-5793(90)80614-o. [DOI] [PubMed] [Google Scholar]
  8. Graeve K., von Schaewen A., Scheibe R. Purification, characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solanum tuberosum L.). Plant J. 1994 Mar;5(3):353–361. doi: 10.1111/j.1365-313x.1994.00353.x. [DOI] [PubMed] [Google Scholar]
  9. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  10. Jeffery J., Hobbs L., Jörnvall H. Glucose-6-phosphate dehydrogenase from Saccharomyces cerevisiae: characterization of a reactive lysine residue labeled with acetylsalicylic acid. Biochemistry. 1985 Jan 29;24(3):666–671. doi: 10.1021/bi00324a019. [DOI] [PubMed] [Google Scholar]
  11. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  12. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  13. Quick W. P., Scheibe R., Neuhaus H. E. Induction of Hexose-Phosphate Translocator Activity in Spinach Chloroplasts. Plant Physiol. 1995 Sep;109(1):113–121. doi: 10.1104/pp.109.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reng W., Riessland R., Scheibe R., Jaenicke R. Cloning, site-specific mutagenesis, expression and characterization of full-length chloroplast NADP-malate dehydrogenase from Pisum sativum. Eur J Biochem. 1993 Oct 1;217(1):189–197. doi: 10.1111/j.1432-1033.1993.tb18233.x. [DOI] [PubMed] [Google Scholar]
  15. Scanlan D. J., Newman J., Sebaihia M., Mann N. H., Carr N. G. Cloning and sequence analysis of the glucose-6-phosphate dehydrogenase gene from the cyanobacterium Synechococcus PCC 7942. Plant Mol Biol. 1992 Aug;19(5):877–880. doi: 10.1007/BF00027085. [DOI] [PubMed] [Google Scholar]
  16. Scheibe R., Anderson L. E. Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochim Biophys Acta. 1981 Jun 12;636(1):58–64. doi: 10.1016/0005-2728(81)90075-x. [DOI] [PubMed] [Google Scholar]
  17. Scheibe R., Geissler A., Fickenscher K. Chloroplast glucose-6-phosphate dehydrogenase: Km shift upon light modulation and reduction. Arch Biochem Biophys. 1989 Oct;274(1):290–297. doi: 10.1016/0003-9861(89)90441-4. [DOI] [PubMed] [Google Scholar]
  18. Schnarrenberger C., Oeser A., Tolbert N. E. Two isoenzymes each of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in spinach leaves. Arch Biochem Biophys. 1973 Jan;154(1):438–448. doi: 10.1016/0003-9861(73)90077-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES