Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Dec;109(4):1337–1343. doi: 10.1104/pp.109.4.1337

Is the Reaction Catalyzed by 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase a Rate-Limiting Step for Isoprenoid Biosynthesis in Plants?

J Chappell 1, F Wolf 1, J Proulx 1, R Cuellar 1, C Saunders 1
PMCID: PMC157667  PMID: 12228673

Abstract

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the irreversible conversion of 3-hydroxy-3-methylglutaryl coenzyme A to mevalonate and is considered a key regulatory step controlling isoprenoid metabolism in mammals and fungi. The rate-limiting nature of this enzyme for isoprenoid biosynthesis in plants remains controversial. To investigate whether HMGR activity could be limiting in plants, we introduced a constitutively expressing hamster HMGR gene into tabacco (Nicotiana tabaccum L.) plants to obtain unregulated HMGR activity. The impact of the resulting enzyme activity on the biosynthesis and accumulation of particular isoprenoids was evaluated. Expression of the hamster HMGR gene led to a 3- to 6-fold increase in the total HMGR enzyme activity. Total sterol accumulation was consequently increased 3- to 10-fold, whereas end-product sterols such as sitosterol, campesterol, and stigmasterol were increased only 2-fold. The level of cycloartenol, a sterol biosynthetic intermediate, was increased more than 100-fold. Although the synthesis of total sterols appears to be limited normally by HMGR activity, these results indicate that the activity of one or more later enzyme(s) in the pathway must also be involved in determining the relative accumulation of end-product sterols. The levels of other isoprenoids such as carotenoids, phytol chain of chlorophyll, and sesquiterpene phytoalexins were relatively unaltered in the transgenic plants. It appears from these results that compartmentation, channeling, or other rate-determining enzymes operate to control the accumulation of these other isoprenoid end products.

Full Text

The Full Text of this article is available as a PDF (768.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brooker J. D., Russell D. W. Subcellular localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Pisum sativum seedlings. Arch Biochem Biophys. 1975 Apr;167(2):730–737. doi: 10.1016/0003-9861(75)90518-4. [DOI] [PubMed] [Google Scholar]
  3. Chappell J., Nable R. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol. 1987 Oct;85(2):469–473. doi: 10.1104/pp.85.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chappell J., Vonlanken C., Vögeli U. Elicitor-inducible 3-hydroxy-3-methylglutaryl coenzyme a reductase activity is required for sesquiterpene accumulation in tobacco cell suspension cultures. Plant Physiol. 1991 Oct;97(2):693–698. doi: 10.1104/pp.97.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chin D. J., Gil G., Russell D. W., Liscum L., Luskey K. L., Basu S. K., Okayama H., Berg P., Goldstein J. L., Brown M. S. Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature. 1984 Apr 12;308(5960):613–617. doi: 10.1038/308613a0. [DOI] [PubMed] [Google Scholar]
  6. Choi D., Ward B. L., Bostock R. M. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell. 1992 Oct;4(10):1333–1344. doi: 10.1105/tpc.4.10.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Endo A. Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot (Tokyo) 1980 Mar;33(3):334–336. doi: 10.7164/antibiotics.33.334. [DOI] [PubMed] [Google Scholar]
  8. Fang T. Y., Baisted D. J. 2,3-Oxidosqualene cyclase and cycloartenol-s-adenosylmethionine methyltransferase activities in vivo in the cotyledon and axis tissues of germinating pea seeds. Biochem J. 1975 Sep;150(3):323–328. doi: 10.1042/bj1500323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feyereisen R., Farnsworth D. E. Characterization and regulation of HMG-CoA reductase during a cycle of juvenile hormone synthesis. Mol Cell Endocrinol. 1987 Oct;53(3):227–238. doi: 10.1016/0303-7207(87)90178-x. [DOI] [PubMed] [Google Scholar]
  10. Genschik P., Criqui M. C., Parmentier Y., Marbach J., Durr A., Fleck J., Jamet E. Isolation and characterization of a cDNA encoding a 3-hydroxy-3-methylglutaryl coenzyme A reductase from Nicotiana sylvestris. Plant Mol Biol. 1992 Oct;20(2):337–341. doi: 10.1007/BF00014504. [DOI] [PubMed] [Google Scholar]
  11. Gil G., Faust J. R., Chin D. J., Goldstein J. L., Brown M. S. Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell. 1985 May;41(1):249–258. doi: 10.1016/0092-8674(85)90078-9. [DOI] [PubMed] [Google Scholar]
  12. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  13. Gondet L., Bronner R., Benveniste P. Regulation of Sterol Content in Membranes by Subcellular Compartmentation of Steryl-Esters Accumulating in a Sterol-Overproducing Tobacco Mutant. Plant Physiol. 1994 Jun;105(2):509–518. doi: 10.1104/pp.105.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gondet L., Weber T., Maillot-Vernier P., Benveniste P., Bach T. J. Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem Biophys Res Commun. 1992 Jul 31;186(2):888–893. doi: 10.1016/0006-291x(92)90829-a. [DOI] [PubMed] [Google Scholar]
  15. Maillot-Vernier P., Gondet L., Schaller H., Benveniste P., Belliard G. Genetic study and further biochemical characterization of a tobacco mutant that overproduces sterols. Mol Gen Genet. 1991 Dec;231(1):33–40. doi: 10.1007/BF00293818. [DOI] [PubMed] [Google Scholar]
  16. Maillot-Vernier P., Schaller H., Benveniste P., Belliard G. Biochemical characterization of a sterol mutant plant regenerated from a tobacco callus resistant to a triazole cytochrome-P-450-obtusifoliol-14-demethylase inhibitor. Biochem Biophys Res Commun. 1989 Nov 30;165(1):125–130. doi: 10.1016/0006-291x(89)91043-7. [DOI] [PubMed] [Google Scholar]
  17. Monger D. J., Lim W. A., Kézdy F. J., Law J. H. Compactin inhibits insect HMG-CoA reductase and juvenile hormone biosynthesis. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1374–1380. doi: 10.1016/0006-291x(82)90939-1. [DOI] [PubMed] [Google Scholar]
  18. Narita J. O., Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell. 1989 Feb;1(2):181–190. doi: 10.1105/tpc.1.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Re E. B., Jones D., Learned R. M. Co-expression of native and introduced genes reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J. 1995 May;7(5):771–784. doi: 10.1046/j.1365-313x.1995.07050771.x. [DOI] [PubMed] [Google Scholar]
  20. SIPERSTEIN M. D., GUEST M. J. Studies on the site of the feedback control of cholesterol synthesis. J Clin Invest. 1960 Apr;39:642–652. doi: 10.1172/JCI104079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schardl C. L., Byrd A. D., Benzion G., Altschuler M. A., Hildebrand D. F., Hunt A. G. Design and construction of a versatile system for the expression of foreign genes in plants. Gene. 1987;61(1):1–11. doi: 10.1016/0378-1119(87)90359-3. [DOI] [PubMed] [Google Scholar]
  22. Stermer B. A., Bostock R. M. Involvement of 3-hydroxy-3-methylglutaryl coenzyme a reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol. 1987 Jun;84(2):404–408. doi: 10.1104/pp.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vögeli U., Chappell J. Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol. 1988 Dec;88(4):1291–1296. doi: 10.1104/pp.88.4.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vögeli U., Chappell J. Inhibition of a plant sesquiterpene cyclase by mevinolin. Arch Biochem Biophys. 1991 Jul;288(1):157–162. doi: 10.1016/0003-9861(91)90178-l. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES