Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jan;110(1):89–96. doi: 10.1104/pp.110.1.89

Coordinated Regulation of the Genes Participating in Starch Biosynthesis by the Rice Floury-2 Locus.

T Kawasaki 1, K Mizuno 1, H Shimada 1, H Satoh 1, N Kishimoto 1, S Okumura 1, N Ichikawa 1, T Baba 1
PMCID: PMC157697  PMID: 12226172

Abstract

The recessive floury-2 (flo-2) locus of rice (Oryza sativa L.), which is located on chromosome 4, causes a strong reduction in expression of the gene encoding an isoform of branching enzyme RBE1 in immature seeds 10 d after flowering. Mapping of the RBE1 gene demonstrated the localization on rice chromosome 6, suggesting that the wild-type Floury-2 (Flo-2) gene regulates RBE1 gene expression in trans. However, reduced expression of the genes encoding some other starch-synthesizing enzymes, including another isoform of branching enzyme RBE3 and granule-bound starch synthase, was also found in the flo-2 seeds. In spite of the low level of RBE1 gene expression in the immature seeds of the flo-2 mutants, the RBE1 gene was equally expressed in the leaves of the wild type and flo-2 mutants. Thus, these results imply that the Flo-2 gene may co-regulate expression of some of the genes participating in starch synthesis possibly in a developing seed-specific manner.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Hnilo J., Larson R., Okita T. W., Morell M., Preiss J. The encoded primary sequence of a rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme. J Biol Chem. 1989 Jul 25;264(21):12238–12242. [PubMed] [Google Scholar]
  2. Baba T., Nishihara M., Mizuno K., Kawasaki T., Shimada H., Kobayashi E., Ohnishi S., Tanaka K., Arai Y. Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol. 1993 Oct;103(2):565–573. doi: 10.1104/pp.103.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhattacharyya M., Martin C., Smith A. The importance of starch biosynthesis in the wrinkled seed shape character of peas studied by Mendel. Plant Mol Biol. 1993 Jun;22(3):525–531. doi: 10.1007/BF00015981. [DOI] [PubMed] [Google Scholar]
  4. Dooner H. K., Robbins T. P., Jorgensen R. A. Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet. 1991;25:173–199. doi: 10.1146/annurev.ge.25.120191.001133. [DOI] [PubMed] [Google Scholar]
  5. Giroux M. J., Boyer C., Feix G., Hannah L. C. Coordinated Transcriptional Regulation of Storage Product Genes in the Maize Endosperm. Plant Physiol. 1994 Oct;106(2):713–722. doi: 10.1104/pp.106.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grotewold E., Athma P., Peterson T. Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4587–4591. doi: 10.1073/pnas.88.11.4587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grotewold E., Drummond B. J., Bowen B., Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell. 1994 Feb 11;76(3):543–553. doi: 10.1016/0092-8674(94)90117-1. [DOI] [PubMed] [Google Scholar]
  8. Jones R. A. Effects of floury-2 locus on zein accumulation and RNA metabolism during maize endosperm development. Biochem Genet. 1978 Feb;16(1-2):27–38. doi: 10.1007/BF00484382. [DOI] [PubMed] [Google Scholar]
  9. Kodrzycki R., Boston R. S., Larkins B. A. The opaque-2 mutation of maize differentially reduces zein gene transcription. Plant Cell. 1989 Jan;1(1):105–114. doi: 10.1105/tpc.1.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lopes M. A., Coleman C. E., Kodrzycki R., Lending C. R., Larkins B. A. Synthesis of an unusual alpha-zein protein is correlated with the phenotypic effects of the floury2 mutation in maize. Mol Gen Genet. 1994 Dec 1;245(5):537–547. doi: 10.1007/BF00282216. [DOI] [PubMed] [Google Scholar]
  11. Lopes M. A., Larkins B. A. Endosperm origin, development, and function. Plant Cell. 1993 Oct;5(10):1383–1399. doi: 10.1105/tpc.5.10.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ludwig S. R., Habera L. F., Dellaporta S. L., Wessler S. R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7092–7096. doi: 10.1073/pnas.86.18.7092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin C., Prescott A., Mackay S., Bartlett J., Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1991 Jul;1(1):37–49. doi: 10.1111/j.1365-313x.1991.00037.x. [DOI] [PubMed] [Google Scholar]
  14. Mizuno K., Kawasaki T., Shimada H., Satoh H., Kobayashi E., Okumura S., Arai Y., Baba T. Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem. 1993 Sep 5;268(25):19084–19091. [PubMed] [Google Scholar]
  15. Mizuno K., Kimura K., Arai Y., Kawasaki T., Shimada H., Baba T. Starch branching enzymes from immature rice seeds. J Biochem. 1992 Nov;112(5):643–651. doi: 10.1093/oxfordjournals.jbchem.a123953. [DOI] [PubMed] [Google Scholar]
  16. Müller-Röber B. T., Kossmann J., Hannah L. C., Willmitzer L., Sonnewald U. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet. 1990 Oct;224(1):136–146. doi: 10.1007/BF00259460. [DOI] [PubMed] [Google Scholar]
  17. Müller-Röber B., Sonnewald U., Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 1992 Apr;11(4):1229–1238. doi: 10.1002/j.1460-2075.1992.tb05167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okagaki R. J. Nucleotide sequence of a long cDNA from the rice waxy gene. Plant Mol Biol. 1992 Jun;19(3):513–516. doi: 10.1007/BF00023402. [DOI] [PubMed] [Google Scholar]
  19. Paz-Ares J., Ghosal D., Wienand U., Peterson P. A., Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 1987 Dec 1;6(12):3553–3558. doi: 10.1002/j.1460-2075.1987.tb02684.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takaiwa F., Oono K. Interaction of an immature seed-specific trans-acting factor with the 5' upstream region of a rice glutelin gene. Mol Gen Genet. 1990 Nov;224(2):289–293. doi: 10.1007/BF00271563. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES