Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jan;110(1):97–103. doi: 10.1104/pp.110.1.97

The Kinetics of N-Ethylmaleimide Inhibition of a Vacuolar H+-ATPase and Determination of Nucleotide Dissociation Constants.

I E Hunt 1, D Sanders 1
PMCID: PMC157698  PMID: 12226173

Abstract

All eukaryotic vacuolar (V-type) ATPases share the property of being inhibited by low concentrations (1-2 [mu]M) if N-ethylmaleimide (NEM). This distinguishes them from P-type ATPases, which are inhibited by higher concentrations of NEM (0.1-1 mM), and F-type ATPases, which are virtually resistant to inhibition by NEM. Using tonoplast vesicles from Beta vulgaris we have determined the kinetics of NEM inactivation of the V-type ATPase to be pseudo-first order. The concentration dependence of the reaction indicates interaction with a single class of inhibitory site with a rate constant of 4.1 x 104 M-1 min-1. Nucleotides protect against inactivation with an efficacy that agrees with their capacity to act as enzyme substrates. The dissociation constant for MgATP has been determined from protection experiments to be 0.44 mM, which is close to the observed Km for hydrolysis (0.39 mM). Likewise, the dissociation constant for protection by MgADP (127 [mu]M) is close to its inhibition constant as a competitive inhibitor (110 [mu]M). Taken together, these findings suggest that NEM inactivation is associated with nucleotide protectable exposure of a single cysteine residue on the catalytic subunit and confirm the utility of this residue for the determination of ligand dissociation constants through protection of maleimide inhibition.

Full Text

The Full Text of this article is available as a PDF (699.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Berne M., Terres G., Terres H., Puopolo K., Forgac M. Subunit composition and ATP site labeling of the coated vesicle proton-translocating adenosinetriphosphatase. Biochemistry. 1987 Oct 20;26(21):6632–6638. doi: 10.1021/bi00395a011. [DOI] [PubMed] [Google Scholar]
  2. Bowman E. J., Mandala S., Taiz L., Bowman B. J. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase from Zea mays. Proc Natl Acad Sci U S A. 1986 Jan;83(1):48–52. doi: 10.1073/pnas.83.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowman E. J., Tenney K., Bowman B. J. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem. 1988 Oct 5;263(28):13994–14001. [PubMed] [Google Scholar]
  4. Brown D., Sabolic I., Gluck S. Polarized targeting of V-ATPase in kidney epithelial cells. J Exp Biol. 1992 Nov;172:231–243. doi: 10.1242/jeb.172.1.231. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee D., Chakraborty M., Leit M., Neff L., Jamsa-Kellokumpu S., Fuchs R., Bartkiewicz M., Hernando N., Baron R. The osteoclast proton pump differs in its pharmacology and catalytic subunits from other vacuolar H(+)-ATPases. J Exp Biol. 1992 Nov;172:193–204. doi: 10.1242/jeb.172.1.193. [DOI] [PubMed] [Google Scholar]
  6. Feng Y., Forgac M. A novel mechanism for regulation of vacuolar acidification. J Biol Chem. 1992 Oct 5;267(28):19769–19772. [PubMed] [Google Scholar]
  7. Feng Y., Forgac M. Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J Biol Chem. 1992 Mar 25;267(9):5817–5822. [PubMed] [Google Scholar]
  8. Feng Y., Forgac M. Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem. 1994 May 6;269(18):13224–13230. [PubMed] [Google Scholar]
  9. Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. doi: 10.1152/physrev.1989.69.3.765. [DOI] [PubMed] [Google Scholar]
  10. Gluck S., Nelson R. The role of the V-ATPase in renal epithelial H+ transport. J Exp Biol. 1992 Nov;172:205–218. doi: 10.1242/jeb.172.1.205. [DOI] [PubMed] [Google Scholar]
  11. Gluck S. V-ATPases of the plasma membrane. J Exp Biol. 1992 Nov;172:29–37. doi: 10.1242/jeb.172.1.29. [DOI] [PubMed] [Google Scholar]
  12. Griffith C. J., Rea P. A., Blumwald E., Poole R. J. Mechanism of Stimulation and Inhibition of Tonoplast H-ATPase of Beta vulgaris by Chloride and Nitrate. Plant Physiol. 1986 May;81(1):120–125. doi: 10.1104/pp.81.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Konishi J., Wakagi T., Oshima T., Yoshida M. Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biochem. 1987 Dec;102(6):1379–1387. doi: 10.1093/oxfordjournals.jbchem.a122184. [DOI] [PubMed] [Google Scholar]
  14. Mandala S., Taiz L. Characterization of the subunit structure of the maize tonoplast ATPase. Immunological and inhibitor binding studies. J Biol Chem. 1986 Sep 25;261(27):12850–12855. [PubMed] [Google Scholar]
  15. Mellman I. The importance of being acid: the role of acidification in intracellular membrane traffic. J Exp Biol. 1992 Nov;172:39–45. doi: 10.1242/jeb.172.1.39. [DOI] [PubMed] [Google Scholar]
  16. Moriyama Y., Nelson N. Nucleotide binding sites and chemical modification of the chromaffin granule proton ATPase. J Biol Chem. 1987 Oct 25;262(30):14723–14729. [PubMed] [Google Scholar]
  17. Poole R. J., Briskin D. P., Krátký Z., Johnstone R. M. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles. Plant Physiol. 1984 Mar;74(3):549–556. doi: 10.1104/pp.74.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Puopolo K., Kumamoto C., Adachi I., Forgac M. A single gene encodes the catalytic "A" subunit of the bovine vacuolar H(+)-ATPase. J Biol Chem. 1991 Dec 25;266(36):24564–24572. [PubMed] [Google Scholar]
  19. Randall S. K., Sze H. Probing the catalytic subunit of the tonoplast H+-ATPase from oat roots. Binding of 7-chloro-4-nitrobenzo-2-oxa-1,3,-diazole to the 72-kilodalton polypeptide. J Biol Chem. 1987 May 25;262(15):7135–7141. [PubMed] [Google Scholar]
  20. Rea P. A., Poole R. J. Chromatographic resolution of h-translocating pyrophosphatase from h-translocating ATPase of higher plant tonoplast. Plant Physiol. 1986 May;81(1):126–129. doi: 10.1104/pp.81.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rea P. A., Poole R. J. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. doi: 10.1104/pp.77.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taiz L., Nelson H., Maggert K., Morgan L., Yatabe B., Taiz S. L., Rubinstein B., Nelson N. Functional analysis of conserved cysteine residues in the catalytic subunit of the yeast vacuolar H(+)-ATPase. Biochim Biophys Acta. 1994 Sep 14;1194(2):329–334. doi: 10.1016/0005-2736(94)90315-8. [DOI] [PubMed] [Google Scholar]
  23. Yamanishi H., Kasamo K. Binding of 7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole to an Essential Cysteine Residue(s) in the Tonoplast H-ATPase from Mung Bean (Vigna radiata L.) Hypocotyls. Plant Physiol. 1992 Jun;99(2):652–658. doi: 10.1104/pp.99.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zimniak L., Dittrich P., Gogarten J. P., Kibak H., Taiz L. The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of F0F1-ATPases. J Biol Chem. 1988 Jul 5;263(19):9102–9112. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES