Abstract
The characteristics of the Fe reduction mechanisms induced by Fe deficiency have been studied in intact plants of Beta vulgaris and in purified plasma membrane vesicles from the same plants. In Fe-deficient plants the in vivo Fe(III)-ethylenediaminetetraacetic complex [Fe(III)-EDTA] reductase activity increased over the control values 10 to 20 times when assayed at a pH of 6.0 or below ("turbo" reductase) but increased only 2 to 4 times when assayed at a pH of 6.5 or above. The Fe(III)-EDTA reductase activity of root plasma membrane preparations increased 2 and 3.5 times over the controls, irrespective of the assay pH. The Km for Fe(III)-EDTA of the in vivo ferric chelate reductase in Fe-deficient plants was approximately 510 and 240 [mu]M in the pH ranges 4.5 to 6.0 and 6.5 to 8.0, respectively. The Km for Fe(III)-EDTA of the ferric chelate reductase in intact control plants and in plasma membrane preparations isolated from Fe-deficient and control plants was approximately 200 to 240 [mu]M. Therefore, the turbo ferric chelate reductase activity of Fe-deficient plants at low pH appears to be different from the constitutive ferric chelate reductase.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bienfait H. F. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr. 1985 Apr;17(2):73–83. doi: 10.1007/BF00744199. [DOI] [PubMed] [Google Scholar]
- Bienfait H. F., de Weger L. A., Kramer D. Control of the development of iron-efficiency reactions in potato as a response to iron deficiency is located in the roots. Plant Physiol. 1987 Feb;83(2):244–247. doi: 10.1104/pp.83.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckhout T. J., Bell P. F., Luster D. G., Chaney R. L. Iron-Stress Induced Redox Activity in Tomato (Lycopersicum esculentum Mill.) Is Localized on the Plasma Membrane. Plant Physiol. 1989 May;90(1):151–156. doi: 10.1104/pp.90.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cakmak I., van de Wetering D. A., Marschner H., Bienfait H. F. Involvement of superoxide radical in extracellular ferric reduction by iron-deficient bean roots. Plant Physiol. 1987 Sep;85(1):310–314. doi: 10.1104/pp.85.1.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
- Holden M. J., Luster D. G., Chaney R. L., Buckhout T. J., Robinson C. Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots. Plant Physiol. 1991 Oct;97(2):537–544. doi: 10.1104/pp.97.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Tolbert N. E., Bieber L. L. Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 1981;72:296–303. doi: 10.1016/s0076-6879(81)72018-4. [DOI] [PubMed] [Google Scholar]
- Moog P. R., van der Kooij T. A., Brüggemann W., Schiefelbein J. W., Kuiper P. J. Responses to iron deficiency in Arabidopsis thaliana: the Turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta. 1995;195(4):505–513. doi: 10.1007/BF00195707. [DOI] [PubMed] [Google Scholar]
- Rosenfield C. L., Reed D. W., Kent M. W. Dependency of Iron Reduction on Development of a Unique Root Morphology in Ficus benjamina L. Plant Physiol. 1991 Apr;95(4):1120–1124. doi: 10.1104/pp.95.4.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Römheld V., Marschner H. Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics. Plant Physiol. 1983 Apr;71(4):949–954. doi: 10.1104/pp.71.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano A., Cordoba F., Gonzalez-Reyes J. A., Navas P., Villalba J. M. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane. Plant Physiol. 1994 Sep;106(1):87–96. doi: 10.1104/pp.106.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sijmons P. C., van den Briel W., Bienfait H. F. Cytosolic NADPH is the electron donor for extracellular fe reduction in iron-deficient bean roots. Plant Physiol. 1984 May;75(1):219–221. doi: 10.1104/pp.75.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Susín S., Abián J., Sánchez-Baeza F., Peleato M. L., Abadía A., Gelpí E., Abadía J. Riboflavin 3'- and 5'-sulfate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). J Biol Chem. 1993 Oct 5;268(28):20958–20965. [PubMed] [Google Scholar]