Abstract
A gene (EGL1) encoding an endo-beta-1,4-D-glucanase (EGase, EC 3.2.1.4) of pea (Pisum sativum) has been cloned and characterized. EGL1 encodes a 486-amino acid polypeptide, including a 24-mer putative signal peptide. The mature protein has a calculated molecular mass of 51.3 kD and an isoelectric point of 9.1. This pea EGase shares significant similarity with EGases from other plant species, but it appears to be distinct from the EGases associated with abscission and fruit ripening. Although EGL1 transcripts are detected in all parts of pea plants, they are relatively abundant in flowers and young pods undergoing rapid growth and most abundant in elongating epicotyls of etiolated seedlings. When epicotyl segments (6 mm long, 4 mm from the apical hook) are incubated in a 5 microM solution of the synthetic auxin analog 2,4-dichlorophenoxyacetic acid, the concentration of EGL1 mRNA increases about 10-fold when the segments elongate most rapidly.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Augur C., Yu L., Sakai K., Ogawa T., Sinaÿ P., Darvill A. G., Albersheim P. Further studies of the ability of xyloglucan oligosaccharides to inhibit auxin-stimulated growth. Plant Physiol. 1992 May;99(1):180–185. doi: 10.1104/pp.99.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bal A. K., Verma D. P., Byrne H., Maclachlan G. A. Subcellular localization of cellulases in auxin-treated pea. J Cell Biol. 1976 Apr;69(1):97–105. doi: 10.1083/jcb.69.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonghi C., Rascio N., Ramina A., Casadoro G. Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Mol Biol. 1992 Dec;20(5):839–848. doi: 10.1007/BF00027155. [DOI] [PubMed] [Google Scholar]
- Byrne H., Christou N. V., Verma D. P., Maclachlan G. A. Purification and characterization of two cellulases from auxin-treated pea epicotyls. J Biol Chem. 1975 Feb 10;250(3):1012–1018. [PubMed] [Google Scholar]
- Cass L. G., Kirven K. A., Christoffersen R. E. Isolation and characterization of a cellulase gene family member expressed during avocado fruit ripening. Mol Gen Genet. 1990 Aug;223(1):76–86. doi: 10.1007/BF00315799. [DOI] [PubMed] [Google Scholar]
- Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
- Chou Q., Russell M., Birch D. E., Raymond J., Bloch W. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 1992 Apr 11;20(7):1717–1723. doi: 10.1093/nar/20.7.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleveland D. W., Sullivan K. F. Molecular biology and genetics of tubulin. Annu Rev Biochem. 1985;54:331–365. doi: 10.1146/annurev.bi.54.070185.001555. [DOI] [PubMed] [Google Scholar]
- Del Campillo E., Lewis L. N. Occurrence of 9.5 cellulase and other hydrolases in flower reproductive organs undergoing major cell wall disruption. Plant Physiol. 1992 Jul;99(3):1015–1020. doi: 10.1104/pp.99.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan D. F., Maclachlan G. A. Massive synthesis of ribonucleic Acid and cellulase in the pea epicotyl in response to indoleacetic Acid, with and without concurrent cell division. Plant Physiol. 1967 Aug;42(8):1114–1122. doi: 10.1104/pp.42.8.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi T., Wong Y. S., Maclachlan G. Pea Xyloglucan and Cellulose : II. Hydrolysis by Pea Endo-1,4-beta-Glucanases. Plant Physiol. 1984 Jul;75(3):605–610. doi: 10.1104/pp.75.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanellis A. K., Kalaitzis P. Cellulase occurs in multiple active forms in ripe avocado fruit mesocarp. Plant Physiol. 1992 Feb;98(2):530–534. doi: 10.1104/pp.98.2.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lashbrook C. C., Gonzalez-Bosch C., Bennett A. B. Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell. 1994 Oct;6(10):1485–1493. doi: 10.1105/tpc.6.10.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liaud M. F., Brinkmann H., Cerff R. The beta-tubulin gene family of pea: primary structures, genomic organization and intron-dependent evolution of genes. Plant Mol Biol. 1992 Feb;18(4):639–651. doi: 10.1007/BF00020007. [DOI] [PubMed] [Google Scholar]
- McDougall G. J., Fry S. C. Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiol. 1990 Jul;93(3):1042–1048. doi: 10.1104/pp.93.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor J. E., Coupe S. A., Picton S., Roberts J. A. Characterization and accumulation pattern of an mRNA encoding an abscission-related beta-1,4-glucanase from leaflets of Sambucus nigra. Plant Mol Biol. 1994 Mar;24(6):961–964. doi: 10.1007/BF00014449. [DOI] [PubMed] [Google Scholar]
- Tucker M. L., Sexton R., Del Campillo E., Lewis L. N. Bean abscission cellulase : characterization of a cDNA clone and regulation of gene expression by ethylene and auxin. Plant Physiol. 1988 Dec;88(4):1257–1262. doi: 10.1104/pp.88.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma D. P., Maclachlan G. A., Byrne H., Ewings D. Regulation and in vitro translation of messenger ribonucleic acid for cellulase from auxin-treated pea epicotyls. J Biol Chem. 1975 Feb 10;250(3):1019–1026. [PubMed] [Google Scholar]