Abstract
Previously, we reported the isolation of a peptide transport gene designated AtPTR2 from Arabidopsis thaliana by functional complementation of a yeast peptide transport mutant. We now report the isolation of a second peptide transport gene (AtPTR2-B) from Arabidopsis using the same approach. Similar to the effects of transferring AtPTR2-A (previously called AtPTR2), transfer of AtPTR2-B to yeast peptide transport mutants restored the ability to grow on di- and tripeptides but not peptides four residues or longer. However, unlike yeast mutants complemented with either the yeast PTR2 gene or the AtPTR2-A gene, transformants expressing AtPTR2-B were only partially sensitive to toxic peptides. Northern analysis showed that AtPTR2-B was constitutively expressed in all plant organs. Studies of the kinetics indicated that AtPTR2-A and AtPTR2-B have Km values of 47 and 14 microM, respectively, with Vmax values of 0.061 and 0.013 nmol mg-1 cell dry weight s-1, respectively, when dileucine was used as a substrate. AtPTR2-B is encoded on a 2.0-kb cDNA corresponding to a 585-amino acid protein (64.4 kD). Hydropathy analysis indicates that the protein is highly hydrophobic and suggests that there are 12 putative transmembrane segments. AtPTR2-B, like AtPTR2-A, shares significant similarity to a number of other proteins involved in transport of peptides into cells.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Andreae W. A., Good N. E. The Formation of Indoleacetylaspartic Acid in Pea Seedlings. Plant Physiol. 1955 Jul;30(4):380–382. doi: 10.1104/pp.30.4.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basrai M. A., Lubkowitz M. A., Perry J. R., Miller D., Krainer E., Naider F., Becker J. M. Cloning of a Candida albicans peptide transport gene. Microbiology. 1995 May;141(Pt 5):1147–1156. doi: 10.1099/13500872-141-5-1147. [DOI] [PubMed] [Google Scholar]
- Daniel H., Adibi S. A. Transport of beta-lactam antibiotics in kidney brush border membrane. Determinants of their affinity for the oligopeptide/H+ symporter. J Clin Invest. 1993 Nov;92(5):2215–2223. doi: 10.1172/JCI116824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dantzig A. H., Hoskins J. A., Tabas L. B., Bright S., Shepard R. L., Jenkins I. L., Duckworth D. C., Sportsman J. R., Mackensen D., Rosteck P. R., Jr Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science. 1994 Apr 15;264(5157):430–433. doi: 10.1126/science.8153632. [DOI] [PubMed] [Google Scholar]
- Fei Y. J., Kanai Y., Nussberger S., Ganapathy V., Leibach F. H., Romero M. F., Singh S. K., Boron W. F., Hediger M. A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994 Apr 7;368(6471):563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
- Frommer W. B., Hummel S., Rentsch D. Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett. 1994 Jun 27;347(2-3):185–189. doi: 10.1016/0014-5793(94)00533-8. [DOI] [PubMed] [Google Scholar]
- Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagting A., Kunji E. R., Leenhouts K. J., Poolman B., Konings W. N. The di- and tripeptide transport protein of Lactococcus lactis. A new type of bacterial peptide transporter. J Biol Chem. 1994 Apr 15;269(15):11391–11399. [PubMed] [Google Scholar]
- Island M. D., Naider F., Becker J. M. Regulation of dipeptide transport in Saccharomyces cerevisiae by micromolar amino acid concentrations. J Bacteriol. 1987 May;169(5):2132–2136. doi: 10.1128/jb.169.5.2132-2136.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lichliter W. D., Naider F., Becker J. M. Basis for the design of anticandidal agents from studies of peptide utilization in Canadida albicans. Antimicrob Agents Chemother. 1976 Sep;10(3):483–490. doi: 10.1128/aac.10.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minet M., Dufour M. E., Lacroute F. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 1992 May;2(3):417–422. doi: 10.1111/j.1365-313x.1992.00417.x. [DOI] [PubMed] [Google Scholar]
- Naider F., Becker J. M., Katzir-Katchalski E. Utilization of methionine-containing peptides and their derivatives by a methionine-requiring auxotroph of Saccharomyces cerevisiae. J Biol Chem. 1974 Jan 10;249(1):9–20. [PubMed] [Google Scholar]
- Paulsen I. T., Skurray R. A. The POT family of transport proteins. Trends Biochem Sci. 1994 Oct;19(10):404–404. doi: 10.1016/0968-0004(94)90087-6. [DOI] [PubMed] [Google Scholar]
- Payne J. W., Smith M. W. Peptide transport by micro-organisms. Adv Microb Physiol. 1994;36:1–80. doi: 10.1016/s0065-2911(08)60176-9. [DOI] [PubMed] [Google Scholar]
- Perry J. R., Basrai M. A., Steiner H. Y., Naider F., Becker J. M. Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene. Mol Cell Biol. 1994 Jan;14(1):104–115. doi: 10.1128/mcb.14.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmenkallio M., Sopanen T. Amino Acid and Peptide uptake in the scutella of germinating grains of barley, wheat, rice, and maize. Plant Physiol. 1989 Apr;89(4):1285–1291. doi: 10.1104/pp.89.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sopanen T., Burston D., Matthews D. M. Uptake of small peptides by the scutellum of germinating barley. FEBS Lett. 1977 Jul 1;79(1):4–7. doi: 10.1016/0014-5793(77)80337-2. [DOI] [PubMed] [Google Scholar]
- Sopanen T., Burston D., Taylor E., Matthews D. M. Uptake of glycylglycine by the scutellum of germinating barley grain. Plant Physiol. 1978 Apr;61(4):630–633. doi: 10.1104/pp.61.4.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner H. Y., Naider F., Becker J. M. The PTR family: a new group of peptide transporters. Mol Microbiol. 1995 Jun;16(5):825–834. doi: 10.1111/j.1365-2958.1995.tb02310.x. [DOI] [PubMed] [Google Scholar]
- Steiner H. Y., Song W., Zhang L., Naider F., Becker J. M., Stacey G. An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell. 1994 Sep;6(9):1289–1299. doi: 10.1105/tpc.6.9.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiruppathi C., Ganapathy V., Leibach F. H. Kinetic evidence for a common transporter for glycylsarcosine and phenylalanylprolylalanine in renal brush-border membrane vesicles. J Biol Chem. 1990 Sep 5;265(25):14870–14874. [PubMed] [Google Scholar]
- Tsay Y. F., Schroeder J. I., Feldmann K. A., Crawford N. M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell. 1993 Mar 12;72(5):705–713. doi: 10.1016/0092-8674(93)90399-b. [DOI] [PubMed] [Google Scholar]
- Winter A., Thimann K. V. Bound indoleacetic Acid in Avena coleoptiles. Plant Physiol. 1966 Feb;41(2):335–342. doi: 10.1104/pp.41.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]